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Abstract / Summary

The ECE Theory (www.aias.us) represents an unified field theory of
electromagnetism, gravitation, weak and strong interaction. It leads, among others,
to a set of electromagnetic equations which represent an extension of the Maxwell or
Maxwell-Heaviside equations of textbook electrodynamics. This extension is based
on the existence of certain physical quantities which are not present in textbook
electrodynamics. They are called vector and scalar spin connection and are related
to the spinning or torsion of space-time. Several ECE papers report on solutions of
the electromagnetic ECE equations which show resonance-like peaks in the potential.
According to the ECE Theory these resonances can be used to extract usable energy
from space-time.

The purpose of this paper is to clarify the commonalities and differences between
ECE and textbook electromagnetism. For the sake of simplicity this work deals only
with electro- and magnetostatics whereby three different sets of equations were
investigated, namely the mere electrostatic ECE equations, the former electro- and
magnetostatic ECE equations and the latest electro- and magnetostatic ECE
equations. The latest equations represent a modification of the former equations.
That modification emerged from recent results of the ECE Theory which report on
the discovery of additional equations, the so-called antisymmetry contraints.

The conclusions of the study of the mere electrostatic ECE equations are the
following. Electrostatics alone is not sufficient to generate resonances in the electric
potential or field, i.e. novel detectable features can be expected only for more
complex scenarios such as electrodynamics. However, if we assume that the so-called

homogeneous current
→
j (

→
r ) does not vanish, then even in electrostatics the potential

or field may show novel features which are not possible in textbook electrostatics.
This statement results from a general solution of the electrostatic ECE equations for
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→
j (

→
r ) 6= 0 which is presented in this paper. Although it is not clear how to generate a

homogeneous current, which is according to the ECE Theory related to gravitation,
its influence on an electric potential or field represents an interesting effect, at least
theoretically.

The results of the study of the electro- and magnetostatic ECE equations can be
summarized as follows. The relevant quantities which appear in the electro- and

magnetostatic ECE equations are the charge density ρ(
→
r ) , current density

→
J (

→
r ) ,

scalar potential φ(
→
r ) , vector potential

→
A(

→
r ) , scalar spin connection ω0(

→
r ) and

vector spin connection
→
ω (

→
r ). By the introduction of another scalar potential g(

→
r )

and another vector potential
→
V (

→
r ) the original electro- and magnetostatic ECE

equations can be transformed into a set of equations which do not contain the spin
connection any more. The transformed equations allow a direct comparison between
ECE and textbook electro- and magnetostatics. The transformed equations
decompose into two sets of equations and physical quantities which indicate the
existence of two different but interconnected physical levels or realities. In this paper
we call them level I and level II. Level I corresponds to the physics of textbook
electro- and magnetostatics. Level II can be considered as an underlying physical
reality which is more subtle than that of textbook electro- and magnetostatics. The
relevant physical quantities and their relations among each other are

• scalar potential β(
→
r ) = φ(

→
r )− g(

→
r )

• electric field
→
E (

→
r ) = −

→
∇β(

→
r ) =

→
Eφ (

→
r ) −

→
Eg (

→
r )

• vector potential
→
Λ(

→
r ) =

→
A(

→
r ) −

→
V (

→
r )

• magnetic field
→
B (

→
r ) =

→
∇ ×

→
Λ(

→
r ) =

→
BA (

→
r ) −

→
BV (

→
r )

whereby the potential or field on the left is a level I quantity, whereas the both
potentials or fields on the right are level II quantities. With respect to the level I

quantities β(
→
r ) ,

→
E (

→
r ) ,

→
Λ(

→
r ) and

→
B (

→
r ) textbook and ECE electro- and

magnetostatics are equivalent. In ECE electro- and magnetostatics, however, these
level I potentials and fields emerge from a difference of two level II quantitites which

both depend on
→
r .

It should be emphasized that ECE and textbook electromagnetism usually use the

same symbol for the scalar and vector potential, namely φ and and
→
A, respectively.

However, as revealed by the transformed equations, they do not represent the same

physical quantity and have to be distinguished. In this paper φ and
→
A denotes the

scalar and vector potential which appears in the original ECE equations, whereas β

and
→
Λ corresponds to the scalar and vector potential of textbook electro- and

magnetostatics, respectively.

The transformed equations reveal distinct differences between the equations and

quantities of level I and II. The level I potentials β(
→
r ) and

→
Λ(

→
r ) are specified by four

decoupled, linear, second-order differential equations. Thus the level I electric and
magnetic quantities or phenomena are decoupled from each other. The level I
equations and quantities are well-known and represent the physics of textbook
electro- and magnetostatics.
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Concerning the former set of the electro- and magnetostatic ECE equations, the level

II potentials φ(
→
r ) and

→
A(

→
r ) are specified by four coupled, non-linear, first-order

differential equations. Thus on level II the electric and magnetic quantities or
phenomena are coupled with each other.

Concerning the latest set of the electro- and magnetostatic ECE equations, the level

II vector potential
→
A(

→
r ) is specified by four coupled, non-linear, first-order

differential equations which comprise exclusively magnetic quantities, whereas the

level II scalar potential φ(
→
r ) is specified by electric quantities and

→
A(

→
r ). Thus on

level II the electric and magnetic quantities or phenomena are partly coupled with

each other. The number of equations which specify
→
A(

→
r ) and φ(

→
r ) are greater than

four. Thus
→
A(

→
r ) and φ(

→
r ) are possibly over-determined. Further studies are

necessary to clarify if for any charge density ρ(
→
r ) and any current density

→
J (

→
r ) a

solution exists.

For the former and latest set of the electro- and magnetostatic ECE equations, which

specify the level II potentials φ(
→
r ) and

→
A(

→
r ) , we present solutions for two special

cases, namely for
→
E =

→
B = 0 as well as for

→
B = 0 and

→
E 6= 0 with any charge density

ρ(
→
r ). For the first case, i.e.

→
E =

→
B = 0 , the solutions represent possible level II

vacuum potentials and fields in the absence of level I fields. The number of possible
solutions is infinite but they are not arbitrary. For the latest set of equations the

presented vacuum vector potentials are curl-free which implies
→
BA (

→
r ) =

→
BV (

→
r ) = 0 .

Therefore we raise for the latest set of equations the question if there are also

vacuum solutions with
→
∇ ×

→
A 6= 0 which would imply

→
BA (

→
r ) =

→
BV (

→
r ) 6= 0 . For the

second case, i.e.
→
B = 0 and

→
E 6= 0 with any charge density ρ(

→
r ) , we found for the

former and the latest set of equations a common type of possible solutions for the

level II scalar potential φ(
→
r ) , namely

φ(
→
r ) =

[
a+ b ln

(
β(

→
r )

β0

)]
β(

→
r ) whereby β(

→
r ) =

1

4 π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R

is the level I scalar potential of textbook electro- and magnetostatics and a , b and β0
are constants.

The former set of the electro- and magnetostatic ECE equations appears as a
consistent extension of textbook electro- and magnetostatics. The latest set of the
electro- and magnetostatic ECE equations comprises the relation
→
E (

→
r ) = − 2

→
A(

→
r )ω0(

→
r ) which involves a potential inconsistency. This relation

represents one of several ways to express the electric field in terms of other quantities.

We consider the special case
→
B = 0 and it seems that this relation can only be

satisfied if the electric field corresponds to that of a single point charge. It seems that
for any other charge densitiy such as two point charges an appropriate scalar spin

connection ω0(
→
r ) does not exist. We briefly suggest some items whose consideration

might lead to an elimination of this inconsistency, e.g. the assumption that ω0(
→
r )

does not represent a scalar but a more complex quantity like a 3 × 3 matrix.
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However, further studies, especially at a higher level of the ECE Theory which
comprises field theory and differential geometry, are necessary to clarify this issue.

The transformed equations lead to the following significant questions: Are the level
II potentials and fields, or their effects, physically detectable ? Do the level I and II
quantities carry the same or different physical characteristics ? Which of three

related quantities such as β(
→
r ), φ(

→
r ) and g(

→
r ) is the relevant quantity (in a specific

context or problem) ? Concerning the latter question it seems that there are
essentially two answers or views:

• The relevant quantity is the level I potential or field such as β(
→
r ), whereas the two

associated level II quantities such as φ(
→
r ) and g(

→
r ) belong to a more subtle physical

reality which is experimentally not yet explored.

• Another view is the following: The relevant quantity is one of the two level II

potentials or fields such as φ(
→
r ) = β(

→
r ) + g(

→
r ) which represents a modification of

the quantity of textbook electro- and magnetostatics. This view predicts a potential
and field which is always different from that of textbook electro- and magnetostatics.
This might appear unsatisfying, however it is maybe conceivable that the additional

potential or field such as g(
→
r ) develops its efficacy only under special conditions.

By means of a gedanken experiment and the feature that the level I potentials and
fields emerge from a difference of two level II quantities we derive a tentative
expression for the vacuum energy density in the absence of level I fields.

Also the electrodynamic ECE equations are briefly presented and discussed. We raise
the question if the approach presented in this work can also be applied to the
time-dependent ECE equations. In other words: Do also the time-dependent
potentials and fields emerge from a difference of two potentials or fields which both

depend on
→
r and t ?
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1 The electrostatic ECE equations

1.1 The original equations and results and discussion of the
transformed equations

Several papers about the ECE electrostatics report on the presence of resonances in
the electric potential φ, see e.g. Refs. [1, 2, 3, 4, 5, 6]. The resonances in φ, which
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may result in an extraction of usable energy from space-time, are related to certain
quantities which are not present in textbook electrostatics and electrodynamics.
They are called spin connection and are related to a spinning space-time.

The electrostatic ECE equations in vector notation are given by 1 2

∆φ −
→
∇ ·
(→
ω φ
)

= − ρ
ε0

(1)

→
∇ ×

(→
ω φ
)

= 0 (2)

→
E = −

→
∇φ +

→
ω φ (3)

whereby ∆ =
→
∇ ·

→
∇ is the Laplace operator, ρ = ρ(

→
r ) the charge density, φ = φ(

→
r )

the scalar electric potential,
→
ω =

→
ω (

→
r ) the vector spin connection, and

→
E =

→
E (

→
r )

the electric field.

For
→
ω = 0 Eqs. (1) − (3) merge into the equations of textbook electrostatics and Eq.

(1) yields the so-called Poisson equation

∆φ = − ρ
ε0

(4)

For a spatially limited charge density, i.e. ρ(
→
r )→ 0 for r →∞, the well-known

1 Eqs. (1) − (3) emerge from the former set of the electro- and magnetostatic ECE equations, i.e.

Eqs. (77) − (82), by
→
A = 0 . Furthermore, Eqs. (1) − (3) refer to the assumption that the so-called

polarization index can be omitted, i.e. one polarization only, see e.g. Ref. [6].

2 In this paper we use the same defintion of the sign of
→
ω as in Ref. [6] which is the most

straightforward definition resulting from the ECE field equations [7]. In the context of resonances in

φ many ECE papers, see e.g. Ref. [8], use another definition of the sign, i.e.
→
ω is replaced by − →

ω .

That means Eqs. (1) − (3) are replaced by ∆φ +
→
∇ ·
(→
ω φ

)
= − ρ

ε0
,

→
∇×

(
− →
ω φ

)
= 0 and

→
E = −

→
∇φ −

→
ω φ . We note that the minus sign in the second equation must not be omitted when

referring to Eq. (9) because
→
ω φ =

→
∇ σ has to be replaced by − →

ω φ =
→
∇ σ . We raise the

question if this issue has been taken into account in the ECE papers. The ECE papers are focussed

on the spin connection and do not use the scalar field σ(
→
r ). However, it seems that a sign reversal

of
→
ω in Eq. (2) has to be considered in some way in the process of the ECE calculations, even if Eq.

(2) suggests to omit it because its right-hand side is equal to zero.
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solution of Eq. (4) is given by 3 4

φ(
→
r ) =

1

4 π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R (5)

For a point charge q located at a position
→
a , i.e. ρ(

→
R) = q δ(

→
R −

→
a), whereby

δ(
→
R −

→
a) = δ(X − a1) δ(Y − a2) δ(Z − a3) represents the Dirac delta function, Eq.

(5) reproduces the well-known Coulomb law 5

φ(
→
r ) =

1

4 π ε0

q

| →r − →
a |

(6)

Eq. (5) represents the summation of the Coulomb potentials

dφ(
→
r ) =

1

4π ε0

ρ(
→
R)

| →r −
→
R |

d 3R (7)

of all charges ρ(
→
R) d 3R which are distributed in a spatially limited range.

For a given charge density ρ(
→
r ) the corresponding electrostatic potential φ(

→
r ) and

the spin connection
→
ω (

→
r ) results from the simultaneous solution of Eqs. (1) and (2).

Now we consider their solution in the following way. Because of

→
∇ ×

(→
∇σ
)

= 0 (8)

Eq. (2) is satisfied if

→
ω φ =

→
∇σ (9)

whereby σ = σ(
→
r ) is a scalar field. Already at this point it is obvious that the

product
→
ω φ is not unambiguously defined because also

→
ω φ =

→
∇ (σ + σ ′) satisfies

Eq. (2) whereby σ ′ = σ ′(
→
r ) is another scalar field. It should be noted that Eqs. (1)

3 We recall that ∆
1

| →r −
→
R |

= − 4π δ(
→
r −

→
R) whereby

δ(
→
r −

→
R) = δ(x−X) δ(y − Y ) δ(z − Z) represents the Dirac delta function.

4 The most general solution of Eq. (4) is given by

φ(
→
r ) =

1

4π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R + φhom(
→
r )

whereby φhom(
→
r ) is a solution of the Laplace equation ∆φhom = 0

5 We note that the Coulomb law is also related to the Gauss law which is just another way to
express the Coulomb law. The Gauss law states that the total flux through a closed surface (which

is given by a surface integral) is
Q

ε0
whereby Q is the total charge located within the closed surface.

Thus, if there are only charges which are exclusively located outside of a closed surface, then the total
flux through this closed surface is zero.
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and (2) represent four equations to determine the four quantities φ and
→
ω.

Nevertheless, due to the intrinsic ambiguousness of rotational fields or operators, the
solutions of these equations comprise a (nearly) arbitrary term.

In other ECE papers the spin connection
→
ω =

→
ω (

→
r ) represents an adjustable function

and the scalar field σ = σ(
→
r ) is not considered. In this paper we have introduced the

scalar field σ = σ(
→
r ) which is apriori an arbitrary function whose associated spin

connection can be calculated. By inserting Eq. (9) in Eq. (1) we obtain

∆φ −
→
∇ ·
(→
∇σ
)

= − ρ
ε0

(10)

and thus

∆φ = − ρ
ε0

+ ∆σ (11)

or

∆(φ− σ)− ρ

ε0
(12)

or

∆β = − ρ
ε0

(13)

whereby

β(
→
r ) = φ(

→
r )− σ(

→
r ) (14)

Thus, at least formally, the arbitrary function σ(
→
r ) and the quantity β(

→
r ) represent

scalar potentials, whereas the quantity ε0 ∆σ has the meaning of a charge density.
Eq. (13) is equivalent to Eq. (4) of textbook electrostatics.

According to Eqs. (4) and (5) the solution of Eqs. (11) − (13) for a spatially limited

charge density ρ(
→
r ) can be represented by 6

φ(
→
r ) =

1

4π ε0

∫∫∫
ρ(

→
R)− ε0∆σ(

→
R)

| →r −
→
R |

d 3R (15)

φ(
→
r ) =

1

4π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R + σ(
→
r ) (16)

β(
→
r ) = φ(

→
r )− σ(

→
r ) =

1

4 π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R (17)

The integral term in Eqs. (16) and (17), and thus also the potential β(
→
r ), is equal to

the potential of textbook electrostatics. Eqs. (16) and (17) suggest two different
views how to consider the description of electrostatics by ECE Theory, namely

6 For the sake of simplicity we have omitted in Eqs. (15) − (17) on the right-hand side the solution
of the corresponding Laplace equation, see footnote 4 on page 7.
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1. Eq. (16) suggests that φ(
→
r ) corresponds or is related to the potential of

textbook electrostatics. However, it depends also on the arbitrary potential

σ(
→
r ), i.e. its specific form is not determined by the electrostatic ECE equations

(1) and (2).

2. Eqs. (13) and (17) shows that the potential β(
→
r ) is equal to that of textbook

electrostatics. Thus, on the level of the potential β(
→
r ) = φ(

→
r )− σ(

→
r ) textbook

and ECE electrostatics are equivalent. In ECE electrostatics, however, the

potential β(
→
r ) arises from a difference between two potentials which both

depend on
→
r , whereas in textbook electrostatics the potential results from one

spatially dependent function.

We will discuss these both views somewhat later in more detail, however alreday at
this place it seems that the second view represents the more plausible interpretation.

We emphasize that in ECE and textbook electrostatics usually the same symbol φ
for the potential is used. However, especially from the perspective of Eq. (17), they
do not represent the same physical quantitiy and have to be distinguished. In this
paper φ represents the potential which appears in the original electrostatic ECE
equations (1) − (3) and β corresponds to the potential used in textbook

electrostatics. According to Eqs. (16) and (17) the case of σ(
→
r ) = constant

corresponds to the scenario of textbook electrostatics.

By inserting the potential (16) into Eq. (9) as well as Eqs. (16) and (9) into Eq. (3)

we get its associated spin connection
→
ω and electric field

→
E, namely

→
ω (

→
r ) =

→
∇σ(

→
r )∫∫∫

ρ(
→
R)

4π ε0 |
→
r −

→
R |

d 3R + σ(
→
r )

(18)

→
E (

→
r ) =

→
Eφ (

→
r ) −

→
Eσ (

→
r ) = −

→
∇
[
φ(

→
r )− σ(

→
r )
]

= −
→
∇β(

→
r )

=
1

4 π ε0

∫∫∫
(
→
r −

→
R) ρ(

→
R)

| →r −
→
R | 3

d 3R

(19)

whereby we have introduced the electric fields
→
Eφ and

→
Eσ by

→
Eφ = −

→
∇φ (20)

→
Eσ = −

→
∇σ (21)

In contrast to the integral representation of the potential φ(
→
r ), see Eq. (16), the

integral representation of the electric field
→
E (

→
r ) does not depend on σ(

→
r ) and is

equal to that of textbook electrostatics. Thus, on the level of the electric field
→
E (

→
r )
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the ECE and textbook electrostatics are equivalent. However, in contrast to the

latter, the electric field
→
E (

→
r ) in ECE electrostatics arises from a difference between

two electric fields which both depend on
→
r and from a difference between two

potentials which both depend on
→
r .

Eq. (18) indicates that the spin connection
→
ω (

→
r ) represents a nearly arbitrary

quantity because it is a function of the arbitrary potential σ(
→
r ).

According to Eqs. (14) − (21) the case of

σ(
→
r ) = c (22)

, whereby c is a constant, implies

β(
→
r ) = φ(

→
r )− c (23)

→
ω (

→
r ) = 0 (24)

→
Eσ (

→
r ) = 0 (25)

→
E (

→
r ) =

→
Eφ (

→
r ) = −

→
∇φ(

→
r ) = −

→
∇β(

→
r ) (26)

and corresponds to the scenario of textbook electro- and magnetostatics.

As already mentioned above, Eqs. (16) and (17) suggest two different perspectives
how to view the description of electrostatics by ECE Theory. Let’s first consider that

which is suggested by Eq. (16). Although σ(
→
r ) represents an apriori arbitrary

function, some restrictions for σ(
→
r ), φ(

→
r ) and

→
ω (

→
r ) result from the requirements for

a spatially limited charge density ρ(
→
r ), namely

σ(
→
r )→ 0 for r →∞ (27)

φ(
→
r )→ 0 for r →∞ (28)

→
ω (

→
r )→ 0 for r →∞ (29)

In spite of these restrictions the number of choices for the function σ(
→
r ) is still

infinite. This appears to be an unsatisfactory situation because, according to Eq.

(16), the nearly arbitrary function σ(
→
r ) enters in the electric potential φ(

→
r ). Several

ECE papers, see e.g. Refs. [1, 2, 3, 4, 5], consider such functions
→
ω (

→
r ) for which φ

displays resonance features with respect to
→
r and/or parameters associated with ρ

such as
→
k for

ρ = ρ0 cos(
→
k ·

→
r ) (30)

However, the ECE electrostatics in terms of Eqs. (1) and (2) implies the presence of

a nearly arbitrary function σ(
→
r ) in the potential φ(

→
r ). Thus it does not provide the

10



physical or experimental conditions which favor the occurrence of resonance features
in the potential φ. Therefore we conclude that the ECE electrostatics in terms of
Eqs. (1) and (2) is not sufficient to create resonance phenomena in the potential φ.
We note that resonance phenomena are usually associated with dynamic and
time-dependent phenomena 7 8 9. Therefore the time-dependent electrodynamic ECE
equations appear as more appropriate candidates for resonance phenomena. The
presence of resonances in those equations are already reported, see e.g. Ref. [12].

The interpretation of ECE electrostatics in terms of Eq. (16) appears unsatisfactory

because of the presence of a nearly arbitrary function σ(
→
r ) in the electric potential

φ(
→
r ). However, as already mentioned, there is another and more plausible way how

to view the description of electrostatics by ECE Theory, namely that which is
suggested by Eqs. (17) and (19).

According to Eqs. (17) and (19) textbook and ECE electrostatics are equivalent on

the level of the potential β(
→
r ) and field

→
E (

→
r ). This means that β(

→
r ) and

→
E (

→
r ) is

identical with the potential and field of textbook electrostatics, respectively. In ECE

electrostatics, however, the potential β(
→
r ) = φ(

→
r )− σ(

→
r ) and field

→
E (

→
r ) =

→
Eφ (

→
r ) −

→
Eσ (

→
r ) emerge from a difference between two functions which both

depend on
→
r , whereas in textbook electrostatics they appear as one spatially

dependent function which corresponds to the case of σ(
→
r ) = constant. Thus the

potential φ(
→
r ) which appears in the electrostatic ECE equations (1) − (3) is not

identical with the potential β(
→
r ) of textbook electrostatics. The single potentials

φ(
→
r ) and σ(

→
r ) and single fields

→
Eφ (

→
r ) and

→
Eσ (

→
r ), which are not specified by the

electrostatic ECE equations (1) − (3), point to a possible existence of a physical
reality beyond that of textbook electrostatics. We raise the questions if these single
potentials and fields are physically measurable and if they cause other physical

effects than those of β(
→
r ) and

→
E (

→
r ). Possibly, the single potentials and fields, or

their effects, are physically not detectable (with present technology) or their
experimental verification requires special circumstances.

7 It should be mentioned that on the microscopic level nothing is static, everything is in permanent
motion. Therefore the static case represents an approximation which may be sufficient for some
macroscopic systems or considerations.

8 In Global Scaling − a new and holistic approach in science [9, 10] − resonance features may
appear on every physical scale, even when no macroscopic time dependence is involved. However, a
discussion of this issue is beyond the scope of this paper

9 Concerning the question if usable energy can be extracted from the space-time or quantum
vacuum in electro- and/or magnetostatic situations, we refer to the interesting work of C. W. Turtur,
see Ref. [11]. It reports on the conversion of vacuum energy into mechanical energy. A rotational
movement of a rotor was achieved by the presence of an electrostatic field which was created by a high
voltage (these experimental conditions might be considered as electrostatic or quasi-electrostatic). It
was clearly shown that the mechanical power Pmech of the rotational movement is much higher than
the electric power Pel to maintain the electric field (in practice Pel is not zero because at high voltages
there are always some small leakage losses). Thus the difference Pmech−Pel > 0 is extracted from the
vauum energy. Also a theoretical foundation of such an energy extraction is presented. It comprises
the presence of an energy circulation in an electro- or magnetostatic field and the influence of electro-
or magnetostatic fields on the propagation of the zero point (ground state) oszillations of the quantum
electrodynamic vacuum.
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These considerations suggest that the presence of a charge density ρ(
→
r ) can be

viewed as a result from a symmetry breaking, i.e. according to Eq. (17)

β(
→
r ) = φ(

→
r )− σ(

→
r ) = 0 ⇔ φ(

→
r ) = σ(

→
r ) for ρ(

→
r ) = 0 (31)

β(
→
r ) = φ(

→
r )− σ(

→
r ) 6= 0 ⇔ φ(

→
r ) 6= σ(

→
r ) for ρ(

→
r ) 6= 0 (32)

The considerations in this section indicate that new observable features can only be
expected for more complex physical scenarios like electrostatics with a non-vanishing
homogeneous current (see section 1.3), electro- and magnetostatics (see section 2 and
3) and electrodynamics.

1.2 The special case of a spin connection which reproduces
the result of textbook electrostatics

In the previous section we have found that on the level of the potential

β(
→
r ) = φ(

→
r )− σ(

→
r ) and field

→
E (

→
r ) the textbook and ECE electrostatics are

equivalent. There is another approach which likewise leads to a compatibility of ECE
and textbook electrostatics. This is given by choosing a specific spin connection
→
ω (

→
r ) that results in a potential φ(

→
r ) and field

→
E (

→
r ) which is equal to that of

textbook electrostatics. This has already been reported in some ECE papers, see e.g.

Ref. [15, 16]. For a point charge Q such a particular spin connection
→
ω (

→
r ) is, for

example, given by

→
ω =

→
r

r2
(33)

Let’s verify that this spin connection
→
ω (

→
r ) reproduces the well-known Coloumb

potential and field. By inserting the Coulomb potential of a point charge Q, i.e.

φ =
1

4π ε0

Q

r
(34)

and the spin connection (33) in Eq. (3) we obtain its electric field:

→
E = −

→
∇ φ +

→
ω φ =

1

4π ε0

(
Q

→
r

r3
+ Q

→
r

r3

)
=

2

4 π ε0
Q

→
r

r3
(35)

According to Eq. (34) and (35) the redefined potential

φ′(
→
r ) = pφ φ(

→
r ) =

1

4 π ε0

Q

r
with pφ = 1 (36)

and the redefined electric field

→
E ′ (

→
r ) = pE

→
E (

→
r ) =

1

4π ε0
Q

→
r

r3
with pE =

1

2
(37)

reproduces the well-known Coulomb law. That means, from the ECE point of view,
every charge is associated with a spin connection. Note, however, that the scaling

12



factors pφ and pE of the potential φ(
→
r ) and electric field

→
E (

→
r ), respectively, are not

equal (which might be viewed as an unsatisfying situation):

pφ = 1 6= pE =
1

2
(38)

From Eq. (9) we can infer that the scalar field σ(
→
r ) which is associated with the

potential φ(
→
r ), Eq. (34), and electric field

→
E (

→
r ), Eq. (35), is given by

σ(
→
r ) = − 1

4 π ε0

Q

r
= −φ(

→
r ) (39)

Now let’s consider the general case. As obvious from Eq. (16), a scalar field σ(
→
r )

which has the same dependence on
→
r as the integral term in Eq. (16) may reproduce

the behavior of textbook electrostatics. That means if

σ(
→
r ) =

s

4π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R (40)

we obtain from Eq. (16)

φ(
→
r ) =

1 + s

4 π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R (41)

whereby s is a parameter. The spin connection
→
ω (

→
r ), which is associated with the

potentials (41) and (40), is obtained by inserting Eq. (40) into Eq. (18):

→
ω (

→
r ) = − s

1 + s

∫∫∫
(
→
r −

→
R) ρ(

→
R)

| →r −
→
R | 3

d 3R

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R

(42)

The electric field
→
E (

→
r ) which is associated with the potentials (41) and (40) is

obtained by inserting Eqs. (9), (40) and (41) into Eq. (3), namely

→
E (

→
r ) = −

→
∇ (φ− σ) =

1

4 π ε0

∫∫∫
(
→
r −

→
R) ρ(

→
R)

| →r −
→
R | 3

d 3R (43)

which is independent of the parameter s and equal to the electric field of textbook
electrostatics like Eq. (19). According to Eq. (41) and (43) the redefined potential

φ̃(
→
r ) = qφ φ(

→
r ) with qφ =

1

1 + s
(44)

and the redefined electric field

→̃
E(

→
r ) = qE

→
E (

→
r ) with qE = 1 (45)

13



reproduces the result of textbook electrostatics. Note, however, that also here the
scaling factors qφ and qE are not equal (which might be viewed as an unsatisfying
situation):

qφ =
1

1 + s
6= qE = 1 (46)

Theoretically, the parameter s, and thus also the scaling factor qφ , does not have to

be constant. If it depends on
→
r , then the behavior of textbook electrostatics may be

obtained by a spatially dependent redefinition of the potential.

We note that from the perspective of Eq. (16) and the considerations in this section,
a deviation from textbook electrostatics appears if the potentials

1

4 π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R and σ(
→
r ) (47)

differ in their dependence on
→
r . However, the electrostatic ECE equations (1) and

(2) do not specify the physical conditions which create such a difference.

1.3 Electrostatics in the presence of a homogeneous current

In this section we consider the electrostatic ECE equations for the case
→
j 6= 0

whereby
→
j=

→
j (

→
r ) is the so-called homogeneous current. The homogeneous current

→
j (

→
r ) is related to effects of gravitation on electromagnetism 10. The physical

circumstances under which a homogeneous current appears, or how it can be
generated experimetally in the laboratory, are presently not clear and therefore it is

usually assumed that
→
j= 0 [17]. Nevertheless, as will be shown in this section, the

presence of a homogeneous current
→
j (

→
r ) may create features in the potential φ(

→
r ) or

β(
→
r ) = φ(

→
r )− σ(

→
r ) which are not known in textbook electrostatics. Thus, in

contrast to the conclusions presented in section 1.1, the homogeneous current
→
j (

→
r )

represents a possibility to create resonance-like features in the potential φ(
→
r ) or

β(
→
r ) = φ(

→
r )− σ(

→
r ), at least theoretically.

In the case of
→
j 6= 0 the electrostatic ECE equations (1) − (3) are modified with

respect to the second equation, see e.g. Ref. [18], and the complete set is given by

∆φ −
→
∇ ·
(→
ω φ
)

= − ρ
ε0

(48)

→
∇ ×

(→
ω φ
)

= −µ0

→
j (49)

→
E = −

→
∇φ +

→
ω φ (50)

10 In contrast to textbook physics the ECE Theory implies a coupling between gravitation and
electromagnetism.
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We assume that the homogeneous current
→
j (

→
r ) represents a given function like the

charge density ρ(
→
r ). To find the general solution of Eqs. (48) and (49) we introduce

a vector field
→
h=

→
h (

→
r ) by

→
j =

→
∇ ×

→
h (51)

whereby
→
h (

→
r ) represents a vector potential of

→
j (

→
r ). This can be done because the

left-hand side of Eq. (49) indicates that the homogeneous current
→
j (

→
r ) appears as a

curl of a vector field. We recall that the vector potential
→
h (

→
r ) is an ambiguous

function because the addition of a gradient of any scalar field leaves
→
j (

→
r )

unchanged. For a given vector field
→
j (

→
r ) there are many ways to find an associated

vector potential
→
h (

→
r ), for example via the following formula [19]:

→
h(

→
r ) = − →

r ×
[ ∫ 1

0

→
j (s

→
r ) s ds

]
(52)

By inserting Eq. (51) in (49) we obtain

→
∇ ×

(→
ω φ
)

= −µ0

→
∇ ×

→
h (53)

By taking into account Eq. (8) we infer that Eq. (53) is satisfied if

→
ω φ = −µ0

→
h +

→
∇σ (54)

whereby σ = σ(
→
r ) represents an arbitrary scalar field. By inserting Eq. (54) in (48)

we get

∆φ −
→
∇ ·

(
−µ0

→
h +

→
∇σ
)

= − ρ
ε0

(55)

and thus

∆(φ− σ) = −µ0

→
∇ ·

→
h −

ρ

ε0
(56)

If
→
h (

→
r ) and ρ(

→
r ) are spatially limited, i.e.

→
h (

→
r )→ 0 for r →∞ and ρ(

→
r )→ 0 for

r →∞, then the solution can be represented in analogy to Eqs. (11) − (17), i.e. 11

φ(
→
r ) =

1

4 π ε0

∫∫∫
ρ(

→
R) + ε0 µ0

→
∇ ·

→
h (

→
R)

| →r −
→
R |

d 3R + σ(
→
r ) (57)

or

β(
→
r ) = φ(

→
r )− σ(

→
r ) =

1

4π ε0

∫∫∫
ρ(

→
R) + ε0 µ0

→
∇ ·

→
h (

→
R)

| →r −
→
R |

d 3R (58)

11 For the sake of simplicity we have omitted in Eqs. (57) and (58) on the right-hand side the
solution of the corresponding Laplace equation, see footnote 4 on page 7.

15



Thus the divergence term ε0 µ0

→
∇ ·

→
h corresponds to a charge density, at least

formally. By inserting Eq. (57) into Eq. (54) as well as Eqs. (57), (58) and (54) into

Eq. (50) we obtain the spin connection
→
ω (

→
r ) and the electric field

→
E (

→
r ) which are

associated with the potential (57), namely

→
ω (

→
r ) =

→
∇σ(

→
r ) − µ0

→
h (

→
r )∫∫∫

ρ(
→
R) + ε0 µ0

→
∇ ·

→
h (

→
R)

4 π ε0 |
→
r −

→
R |

d 3R + σ(
→
r )

(59)

→
E (

→
r ) = −µ0

→
h (

→
r ) −

→
∇β(

→
r )

= −µ0

→
h (

→
r ) +

∫∫∫ (
→
r −

→
R)
[
ρ(

→
R) + ε0 µ0

→
∇·

→
h (

→
R)
]

4 π ε0 |
→
r −

→
R | 3

d 3R
(60)

Like that electric field which is represented by Eq. (19), the electric field given by

Eq. (60) does not depend on the arbitrary scalar field σ(
→
r ). According to Eqs. (56)

− (60) the vector field
→
j (

→
r ) =

→
∇ ×

→
h (

→
r ) may lead to modifications of the potential

φ(
→
r ) or β(

→
r ) = φ(

→
r )− σ(

→
r ) and field

→
E (

→
r ). Such modifications are not known in

textbook electrostatics. For an appropriate spatial dependence the homogeneous

current
→
j (

→
r ) =

→
∇ ×

→
h (

→
r ) may create resonance-like features in the potential φ(

→
r )

or β(
→
r ) = φ(

→
r )− σ(

→
r ).

According to Eq. (58) the case of β(
→
r ) = φ(

→
r )− σ(

→
r ) 6= 0 may be viewed as a

breaking of a symmetry:

β(
→
r ) = φ(

→
r )− σ(

→
r ) = 0

for charge density
[
ρ(

→
r ) + ε0 µ0

→
∇ ·

→
h (

→
r )
]

= 0
(61)

β(
→
r ) = φ(

→
r )− σ(

→
r ) 6= 0

for charge density
[
ρ(

→
r ) + ε0 µ0

→
∇ ·

→
h (

→
r )
]
6= 0

(62)

We note that, according to Eqs. (49) − (60), the vector field
→
h (

→
r ) should be a

source and rotational field at the same time, i.e.

→
∇ ·

→
h 6= 0 and

→
∇ ×

→
h 6= 0 (63)
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Otherwise there is no difference to the case described in section 1.1. For comparison

we note that in textbook electro- and magnetostatics the electric field
→
E is a

non-rotational source field. i.e.

→
∇ ·

→
E 6= 0 and

→
∇ ×

→
E = 0 (64)

and the magnetic field
→
B is a source-free rotational field, i.e.

→
∇ ·

→
B = 0 and

→
∇ ×

→
B 6= 0 (65)

1.4 Summary

By introducing two further scalar potentials, σ(
→
r ) and β(

→
r ), by

→
ω φ =

→
∇σ (66)

β = φ− σ (67)

the electrostatic ECE equations (1) − (3) were transformed into

∆ β = − ρ
ε0

(68)

→
E = −

→
∇β (69)

These equations do not contain the vector spin connection
→
ω any more and permit a

direct comparison with the equations of textbook electrostatics. Actually, with

respect to the scalar potential β and electric field
→
E the Eqs. (68) and (69) are

equivalent to the equations of textbook electrostatics. For a spatially limited charge
density ρ the solution of Eq. (68) is given by 12

β(
→
r ) = φ(

→
r )− σ(

→
r ) =

1

4 π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R (70)

and thus

→
E (

→
r ) =

→
Eφ (

→
r ) −

→
Eσ (

→
r ) =

1

4π ε0

∫∫∫
(
→
r −

→
R) ρ(

→
R)

| →r −
→
R | 3

d 3R (71)

whereby

→
Eφ = −

→
∇φ (72)

12 The most general solution of Eq. (68) is given by

β(
→
r ) =

1

4π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R + βhom(
→
r )

whereby βhom(
→
r ) is a solution of the Laplace equation ∆βhom = 0
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→
Eσ = −

→
∇σ (73)

Thus, on the level of the potential β(
→
r ) and field

→
E (

→
r ) the textbook and ECE

electrostatics are equivalent. In ECE electrostatics, however, the potential and field

arises from a difference of two potentials or fields which both depend on
→
r . This

peculiar feature is an effect of the vector spin connection
→
ω (

→
r ) which is related to

the spinning or torsion of space-time. We emphasize that the potential φ(
→
r ) which

appears in the electrostatic ECE equations is not identical with the potential β(
→
r ) of

textbook electrostatics. In contrast to that, the field
→
E (

→
r ) which appears in the

electrostatic ECE equations is equal to the field of textbook electrostatics.

The potentials φ(
→
r ) and σ(

→
r ) and fields

→
Eφ (

→
r ) and

→
Eσ (

→
r ), which are not explicitly

specified by the electrostatic ECE equations, point to a possible existence of a
physical reality beyond that of textbook electrostatics. We raise the question if these
potentials and fields, or their effects, are physically measurable and if they carry the

same physical characteristics like those of β(
→
r ) and

→
E (

→
r ).

Another significant question is which of the three associated potentials β(
→
r ) , φ(

→
r )

and σ(
→
r ) and which of the three associated fields

→
E (

→
r ) ,

→
Eφ (

→
r ) and

→
Eσ (

→
r ) is the

relevant quantity (in a specific context or problem). It seems that there are
essentially two answers or views:

1. The relevant quantity is φ(
→
r ) or σ(

→
r ) as well as

→
Eφ (

→
r ) or

→
Eσ (

→
r ) . These

quantities can be considered as a modification of the corresponding textbook

quantity, e.g. φ(
→
r ) = β(

→
r ) + σ(

→
r ) represents a modification of β(

→
r ) which is

the potential of textbook electrostatics. This view predicts a potential and field
which is always different from that of textbook electrostatics. This might
appear unsatisfying, however it is conceivable that the additional quantity such

as σ(
→
r ) develops its efficacy only under special conditions.

2. The relevant quantity is the potential β(
→
r ) and field

→
E (

→
r ) of textbook

electrostatics, whereas the potentials φ(
→
r ) and σ(

→
r ) and fields

→
Eφ (

→
r ) and

→
Eσ (

→
r ) belong to a more subtle physical reality which is experimentally not yet

explored.

The potential σ(
→
r ), however, is a nearly arbitrary function, i.e. it is not explicitly

specified by the electrostatic ECE equations, and thus also the potential φ(
→
r ) is an

ambiguous quantity. Therefore the first view seems to be unsatisfying and we
conclude that the second view makes more sense. This means that ECE
electrostatics in the form of Eqs. (1) − (3) does not imply new phenomena which are
(easily) verifiable in an experimental manner, even if any electrical charge is

associated with a vector spin connection
→
ω (

→
r ) and the potential β(

→
r ) and field

→
E (

→
r )

emerge from a difference of two potentials or fields which both depend on
→
r .

However, if we assume that the so-called homogeneous current
→
j (

→
r ) is not zero, then

the electrostatic potentials and fields may show novel features which are not possible
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in textbook electrostatics. According to ECE Theory the homogeneous current
→
j (

→
r )

is related to effects of gravitation on electromagnetism. The electrostatic ECE

equations for
→
j (

→
r ) 6= 0 are given by Eqs. (48) − (50). In a similar way as above

and by introducing the vector potential
→
h (

→
r ) of the homogeneous current

→
j (

→
r ) by

→
j =

→
∇ ×

→
h (74)

the Eqs. (48) − (50) can be transformed into equations which do not comprise the

vector spin connection
→
ω (

→
r ) any more. The resulting potential β(

→
r ) and field

→
E (

→
r )

is given by 13

β(
→
r ) = φ(

→
r )− σ(

→
r ) =

1

4 π ε0

∫∫∫
ρ(

→
R) + ε0 µ0

→
∇·

→
h (

→
R)

| →r −
→
R |

d 3R (75)

→
E (

→
r ) = −µ0

→
h (

→
r ) −

→
∇β(

→
r )

= −µ0

→
h (

→
r ) +

∫∫∫ (
→
r −

→
R)
[
ρ(

→
R) + ε0 µ0

→
∇·

→
h (

→
R)
]

4 π ε0 |
→
r −

→
R | 3

d 3R
(76)

Even if it is presently not clear how to generate a homogeneous current experimetally
in the laboratory, its influence on electrostatic potentials and fields is an interesting
effect, at least theoretically.

2 The former set of the electro- and

magnetostatic ECE equations

In this section we will consider the former set of electro- and magnetostatic ECE
equations which are eight equations with eight variables. We will show that these
equations can be transformed into 4 equations with 4 variables. This can be done by

the introduction of a scalar field g(
→
r ), similar to the scalar field σ(

→
r ) used in section

1. This scalar field g(
→
r ) stands for the difference between ECE and textbook

electrostatics and in this sense it assumes the role of the overall four spin connection

components
→
ω (

→
r ) and ω0(

→
r ).

2.1 The set of equations in its original form

The former set of the electro- and magnetostatic ECE equations in vector notation,
see e.g. Ref. [20] or [21], is given by 14

13 For the sake of simplicity we have omitted in Eq. (75) on the right-hand side the solution of the
corresponding Laplace equation, see footnote 12 on page 17.

14 Eqs. (77) − (82) refer to the assumption that the so-called polarization index can be omitted,
i.e. one polarization only, see e.g. Ref. [21].

19



Field equations in terms of potentials:

→
∇ ·
(→
ω ×

→
A
)

= 0 (77)

→
∇ ×

(→
ω φ −

→
A ω0

)
= 0 (78)

∆φ −
→
∇ ·
(→
ω φ −

→
A ω0

)
= − ρ

ε0
(79)

→
∇ ×

(→
∇ ×

→
A −

→
ω ×

→
A
)

= µ0

→
J

or (80)
→
∇
(→
∇ ·

→
A
)
− ∆

→
A −

→
∇ ×

(→
ω ×

→
A
)

= µ0

→
J

Field-potential relations:

→
E = −

→
∇φ +

→
ω φ −

→
A ω0 (81)

→
B =

→
∇ ×

→
A −

→
ω ×

→
A (82)

whereby
→
A =

→
A(

→
r ) is the vector potential,

→
J =

→
J (

→
r ) the current density, ω0 = ω0(

→
r )

the so-called scalar spin connection,
→
ω =

→
ω (

→
r ) the so-called vector spin connection,

→
E =

→
E (

→
r ) the electric field, and

→
B =

→
B (

→
r ) the magnetic field. The two different

forms of equation Eq. (80) are based on the relation

→
∇ ×

→
∇ ×

→
A =

→
∇
(→
∇ ·

→
A
)
− ∆

→
A (83)

Eqs. (77) − (82) merge into the equations of textbook electro- and magnetostatics if

• →
ω φ =

→
A ω0

which implies
→
ω ×

→
A = 0 because in this case

→
ω and

→
A are (anti)parallel to

each other − this condition is reported in Ref [13] for the electrodynamic
equations and works also for the electro- and magnetostatic case

or

• →
ω = 0 and ω0 = 0
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2.2 Results and discussion of the transformed equations

Eqs. (77) − (80) represent 8 equations to determine the 8 quantities ω0 ,
→
ω , φ and

→
A. Nevertheless, due to the presence of rotational fields and operators, the solutions
comprise an ambiguousness. By taking into account Eq. (8) we may infer from Eq.
(78) that

→
ω φ −

→
A ω0 =

→
∇g (84)

whereby g = g(
→
r ) represents a scalar field which is apriori ambiguous. Now let’s take

the cross product with
→
A on both sides of Eq. (84), i.e.(→

ω φ −
→
A ω0

)
×

→
A =

(→
∇g
)
×

→
A (85)

Because the second term on the left side vanishes we get

→
ω ×

→
A =

(→
∇g
)
×

→
A

φ
(86)

By inserting Eq. (86) into Eqs. (77) and (80) as well as Eq. (84) into Eq. (79) we
obtain

→
∇ ·


(→
∇g
)
×

→
A

φ

 = 0 (87)

−
→
∇ ×


(→
∇g
)
×

→
A

φ

 +
→
∇ ×

→
∇ ×

→
A = µ0

→
J (88)

∆(φ− g) = ∆ β = − ρ
ε0

(89)

whereby

β(
→
r ) = φ(

→
r )− g(

→
r ) (90)

Thus we have reduced the eight Eqs. (77) − (80) with eight variables to the five

equations (87) − (89) with five variables φ, g and
→
A. By inserting Eq. (84) in (81)

and (86) in (82) we get the corresponding electric and magnetic field:

→
E = −

→
∇ (φ− g) = −

→
∇β (91)

→
B =

→
∇ ×

→
A −


(→
∇g
)
×

→
A

φ

 (92)

Interestingly, looking at Eqs. (87) − (92), the spin connections
→
ω (

→
r ) and ω0(

→
r ) do

not appear any more. Thus, in this approach or representation the difference
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between ECE and textbook electro- and magnetostatics is given by a single quantity,

namely the scalar field g(
→
r ) which represents a potential. This resembles to the

approach presented in section 1 where the related potential σ(
→
r ) takes quasi over the

role of
→
ω (

→
r ).

For a spatially limited charge density ρ(
→
r ), i.e. ρ(

→
r )→ 0 for r →∞, the well-known

solution of Eq. (89) is given by 15

β(
→
r ) = φ(

→
r )− g(

→
r ) =

1

4π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R (93)

By inserting Eq. (93) into Eq. (91) the electric field
→
E becomes

→
E (

→
r ) =

→
Eφ (

→
r ) −

→
Eg (

→
r ) = −

→
∇
[
φ(

→
r )− g(

→
r )
]

= −
→
∇β(

→
r )

=
1

4π ε0

∫∫∫
(
→
r −

→
R) ρ(

→
R)

| →r −
→
R | 3

d 3R

(94)

whereby we have introduced the electric fields
→
Eφ and

→
Eg by

→
Eφ = −

→
∇φ (95)

→
Eg = −

→
∇g (96)

According to Eq. (93) and (94) the scalar potential β(
→
r ) and electric field

→
E (

→
r ) is

equal to the scalar potential and electric field of textbook electro- and

magnetostatics, respectively. Thus, on the level of the scalar potential β(
→
r ) and

electric field
→
E (

→
r ) the ECE and textbook electro- and magnetostatics are equivalent.

However, in ECE Theory the scalar potential β(
→
r ) and electric field

→
E (

→
r ) emerge

from a difference between two quantities which both depend on
→
r , whereas in

textbook electro- and magnetostatics they result always from one spatially
dependent function.

According to Eqs. (93) − (96) the case of

g(
→
r ) = g0 (97)

, whereby g0 is a constant, implies

β(
→
r ) = φ(

→
r )− g0 (98)

15 The most general solution of Eq. (89) is given by

β(
→
r ) =

1

4π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R + βhom(
→
r )

whereby βhom(
→
r ) is a solution of the Laplace equation ∆βhom = 0

22



→
Eg (

→
r ) = 0 (99)

→
E (

→
r ) =

→
Eφ (

→
r ) = −

→
∇φ(

→
r ) = −

→
∇β(

→
r ) (100)

and corresponds to the scenario of textbook electro- and magnetostatics.

We emphasize that ECE and textbook electro- and magnetostatics usually use the
same symbol φ for the scalar potential. However, according to the above-mentioned
results they do not represent the same quantity and have to be distinguished. In this
paper φ represents the scalar potential which appears in the original electro- and
magnetostatic ECE equations (77) − (82) and β corresponds to the scalar potential

of textbook electro- and magnetostatics. In contrast to that, the electric field
→
E,

which likewise appears in the original electro- and magnetostatic ECE equations (77)
− (82), is identical to the electric field of textbook electro- and magnetostatics.

Now let’s consider the magnetic field
→
B. By inserting Eq. (82) into the upper part of

Eq. (80) or by inserting Eq. (92) into Eq. (88) we obtain

→
∇ ×

→
B = µ0

→
J (101)

which is the same relation between magnetic field
→
B and current density

→
J as in

textbook magneto- and electrostatics. From Eq. (77) 16 we infer that
→
ω ×

→
A can be

written as

→
ω ×

→
A =

→
∇ ×

→
V (102)

whereby
→
V =

→
V (

→
r ) is another vector potential which depends in some way on the

vector poential
→
A =

→
A(

→
r ). We introduce another vector potential

→
Λ =

→
Λ(

→
r ) by

→
Λ =

→
A −

→
V (103)

From Eqs. (82), (102), and (103) it follows that the magnetic field
→
B can be

represented as

→
B =

→
∇ ×

→
Λ =

→
∇ ×

(→
A −

→
V
)

=
→
∇ ×

→
A −

→
∇ ×

→
V

=
→
∇ ×

→
A −

→
ω ×

→
A

(104)

With respect to the magnetic field
→
B, current density

→
J , and vector potential

→
Λ, the

Eqs. (101) and (104) are the same as those in textbook magneto- and electrostatics.

Thus
→
Λ coresponds to the vector potential used in textbook magneto- and

electrostatics. By inserting Eq. (104) into Eq. (101) and by means of Eq. (83) we get

→
∇ ×

( →
∇ ×

→
Λ
)

=
→
∇
( →
∇ ·

→
Λ
)
− ∆

→
Λ = µ0

→
J (105)

16 Looking at Eqs. (82) and (77) we see that the latter is equivalent to
→
∇ ·

→
B = 0 which means

the absence of magnetic monopoles.
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By using the so-called Coulomb gauge
→
∇ ·

→
Λ = 0 , see footnote 29 in section 3, Eq.

(105) becomes

∆
→
Λ = −µ0

→
J (106)

For a spatially limited current density
→
J (

→
r ), i.e.

→
J (

→
r )→ 0 for r →∞, the vector

potential
→
Λ =

→
A −

→
V which solves Eq. (106) is well-known, namely 17

→
Λ(

→
r ) =

→
A(

→
r ) −

→
V (

→
r ) =

µ0

4π

∫∫∫ →
J (

→
r )

| →r −
→
R |

d 3R (107)

By inserting Eq. (107) into Eq. (104) the magnetic field
→
B results in

→
B (

→
r ) =

→
BA (

→
r ) −

→
BV (

→
r ) =

→
∇ ×

[→
A(

→
r ) −

→
V (

→
r )
]

=
→
∇ ×

→
Λ(

→
r )

=
µ0

4π

∫∫∫ →
J (

→
R)× (

→
r −

→
R)

| →r −
→
R | 3

d 3R

(108)

whereby we have introduced the magnetic fields
→
BA and

→
BV by

→
BA =

→
∇ ×

→
A (109)

→
BV =

→
∇ ×

→
V =

→
ω ×

→
A (110)

According to Eq. (107) and (108) the vector potential
→
Λ(

→
r ) and magnetic field

→
B (

→
r )

is equal to the vector potential and magnetic field of textbook magneto- and

electrostatics, respectively. Thus, on the level of the vector potential
→
Λ(

→
r ) and

magnetic field
→
B (

→
r ) textbook and ECE magneto- and electrostatics are equivalent.

However, in ECE Theory

• the vector potential
→
Λ(

→
r ) emerges from a difference between two vector

potentials whose curl do not vanish

• the magnetic field
→
B (

→
r ) emerges from a difference between two magnetic fields

which both depend on
→
r

whereas in textbook electro- and magnetostatics they result always from one
spatially vector field.

17 The most general solution of Eq. (106) is given by

→
Λ (

→
r ) =

µ0

4π

∫∫∫ →
J (

→
R)

| →r −
→
R |

d 3R +
→
Λhom (

→
r )

whereby the components of
→
Λhom (

→
r ) are solutions of the Laplace equations ∆

→
Λhom = 0
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According to Eqs. (103), (104), (108) − (110) the case of

→
V (

→
r ) =

→
∇α(

→
r ) (111)

, whereby α(
→
r ) is any scalar field, implies

→
∇ ×

→
V (

→
r ) = 0 (112)

→
Λ(

→
r ) =

→
A(

→
r ) −

→
∇α(

→
r ) (113)

→
BV (

→
r ) = 0 (114)

→
B (

→
r ) =

→
BA (

→
r ) =

→
∇ ×

→
A(

→
r ) =

→
∇ ×

→
Λ(

→
r ) (115)

and corresponds to the scenario of textbook magneto- and electrostatics. Another

way to describe this case is obvious from Eqs. (87) − (92), namely by g(
→
r ) = g0

whereby g0 is constant.

We emphasize that ECE and textbook magneto- and electrostatics usually use the

same symbol
→
A for the vector potential. However, according to the above-mentioned

results they do not represent the same quantity and have to be distinguished. In this

paper
→
A represents the vector potential which appears in the original magneto- and

electrostatic ECE equations (77) − (82) and
→
Λ corresponds to the vector potential of

textbook magneto- and electrostatics. In contrast to that, the magnetic field
→
B,

which likewise appears in the original magneto- and electrostatic ECE equations (77)
− (82), is identical to the magnetic field of textbook magneto- and electrostatics.

The above considerations have shown the equivalence of ECE and textbook electro-
and magnetostatics on the level of the

• scalar potential β(
→
r ) = φ(

→
r )− g(

→
r )

• electric field
→
E (

→
r ) =

→
Eφ (

→
r ) −

→
Eg (

→
r )

• vector potential
→
Λ(

→
r ) =

→
A(

→
r ) −

→
V (

→
r )

• magnetic field
→
B (

→
r ) =

→
BA (

→
r ) −

→
BV (

→
r )

This means that the scalar potential β(
→
r ), electric field

→
E (

→
r ), vector potential

→
Λ(

→
r )

and magnetic field
→
B (

→
r ) is identical with the scalar potential, electric field, vector

potential and magnetic field of textbook electro- and magnetostatics, respectively. In
ECE electro- and magnetostatics, however, these four quantities (we call them level I
quantities) emerge from a difference of two quantities (we call them level II

quantities) which both depend on
→
r , whereas in textbook electro- and

magnetostatics they result always from one spatially dependent scalar or vector field

which corresponds to the case g(
→
r ) = constant. The level II scalar potentials φ(

→
r )

and g(
→
r ), level II electric fields

→
Eφ (

→
r ) and

→
Eg (

→
r ), level II vector potentials

→
A(

→
r )
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and
→
V (

→
r ), and level II magnetic fields

→
BA (

→
r ) and

→
BV (

→
r ) point to the existence of a

possible physical reality beyond that of textbook electro- and magnetostatics. We
raise the following questions:

• Are the level II potentials and fields, or their effects, physically detectable ?
Possibly their experimental verification requires special circumstances and / or
special measurement techniques.

• Do the level II potentials and fields carry the same physical characteristics like

those of the level I quantities β(
→
r ) ,

→
E (

→
r ) ,

→
Λ(

→
r ) and

→
B (

→
r ) ?

• Which of three related quantities such as β(
→
r ), φ(

→
r ) and g(

→
r ) is the relevant

quantity ? Possibly this depends on the specific context or problem.

Concerning the latter question it seems that there are two possibilities how to view

the physical meaning of three related quantities such as β(
→
r ), φ(

→
r ) and g(

→
r ):

1. The relevant quantity is that which corresponds to that of textbook electro-

and magnetostatics, i.e. for example β(
→
r ), whereas the level II quantities such

as φ(
→
r ) and g(

→
r ) belong to a more subtle physical reality which is

experimentally not yet explored.

2. The relevant quantity is one of the two level II quantities, i.e. for example φ(
→
r )

or g(
→
r ), and represents a modification of the quantity of textbook electro- and

magnetostatics. For example, φ(
→
r ) = β(

→
r ) + g(

→
r ) represents a modification of

β(
→
r ).

On the level of the four quantities β(
→
r ) ,

→
E (

→
r ) ,

→
Λ(

→
r ) and

→
B (

→
r ) textbook and ECE

electro- and magnetostatics are equivalent. The potentials β(
→
r ) and

→
Λ(

→
r ) are given

by Eqs. (93) and (107) which are solutions of the linear decoupled second-order
differential equations (89) and (106). The fact that Eqs. (89) and (106) are
decoupled means that there is no coupling between electric and magnetic quantities.
This is obvious from Eqs. (93), (94), (107) and (108) which show that

• the scalar potential β(
→
r ) and electric field

→
E (

→
r ) is exclusively specified by the

charge density ρ(
→
r )

• the vector potential
→
Λ(

→
r ) and magnetic field

→
B (

→
r ) is exclusively specified by

the current density
→
J (

→
r )

Interestingly, however, for the level II potentials and fields φ(
→
r ) , g(

→
r ) ,

→
Eφ (

→
r ) ,

→
Eg (

→
r ) ,

→
A(

→
r ) ,

→
V (

→
r ) ,

→
BA (

→
r ) and

→
BV (

→
r ) there is a coupling between electric and

magnetic quantities, i.e. in general each of these quantities depends on ρ(
→
r ) and

→
J (

→
r ). This coupling is described by Eqs. (87) − (89). Once the scalar potentials

φ(
→
r ) and g(

→
r ) and the vector potential

→
A(

→
r ) are determined from Eqs. (87) − (89),

the other level II quantities can be computed from Eqs. (95), (96) and (107) − (110).
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Now we turn once again to Eqs. (87) − (89). In contrast to the (nearly) arbitrary

scalar potential σ(
→
r ) used in section 1, the related scalar potential g(

→
r ) in Eqs. (87)

− (89) appears apriori not as an ambiguous quantity. Nevertheless, the structure of
Eqs. (87) − (89) suggests the existence of an ambiguousness in the overall solution.
For example, an ambiguousness in the overall solution of Eqs. (87) − (89) may arise
from the transformation (→

∇g
)
×

→
A

φ
→

(→
∇g
)
×

→
A

φ
+

→
∇w (116)

whereby w = w(
→
r ) is a scalar field. This transformation leaves Eq. (88) unchanged,

whereas in Eq. (87) an additional term ∆w appears. However, if the scalar field

w = w(
→
r ) satisfies the Laplace equation, i.e. ∆w = 0, then also Eq. (87) remains

unchanged.

In Eq. (84), with regard to Eq. (78), the scalar potential g(
→
r ) appears as an

ambiguous quantity. It seems as if the ambiguousness of g(
→
r ), when going from Eq.

(84) to Eqs. (87) − (89), is shifted to the spin connection which is, however, not

needed any more for the determination of φ(
→
r ) and

→
A(

→
r ). According to Eq. (84) the

vector spin connection
→
ω (

→
r ) is given by

→
ω =

→
∇g +

→
A ω0

φ
(117)

whereby the scalar spin connection ω0(
→
r ) is undetermined and represents an

arbitrary function.

2.3 The equations for the level II potentials

Eqs. (87) − (89) can be further simplified to four coupled first order differential
equations with four variables in the following way. By inserting Eq. (101) into Eq.
(88) we get

−
→
∇ ×


(→
∇g
)
×

→
A

φ
+

→
∇ ×

→
A

 =
→
∇ ×

→
B (118)

By taking into account Eq. (8) we infer that Eq. (118) is satisfied when

−

(→
∇g
)
×

→
A

φ
+

→
∇ ×

→
A =

→
B +

→
∇ψ (119)

whereby ψ = ψ(
→
r ) is apriori an arbitrary scalar field. From Eq. (90) we obtain

→
∇g =

→
∇φ −

→
∇β (120)

Inserting Eq. (94) into Eq. (120) yields

→
∇g =

→
∇φ +

→
E (121)
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By inserting Eq. (121) into Eqs. (87) and (119) we get

→
∇ ·

[→
E +

→
∇φ
φ

×
→
A

]
= 0 (122)

−
→
E +

→
∇φ
φ

×
→
A +

→
∇ ×

→
A =

→
B +

→
∇ψ (123)

∆ψ = 0 (124)

whereby the level I fields, which are given by Eqs. (94) and (108),

→
E (

→
r ) = −

→
∇β(

→
r ) =

1

4 π ε0

∫∫∫
ρ(

→
R) (

→
r −

→
R)

| →r −
→
R | 3

d 3R (125)

→
B (

→
r ) =

→
∇ ×

→
Λ(

→
r ) =

µ0

4π

∫∫∫ →
J (

→
R)× (

→
r −

→
R)

| →r −
→
R | 3

d 3R (126)

are considered as given functions because they depend exclusively on the charge

density ρ(
→
r ) or current density

→
J (

→
r ). The scalar field ψ(

→
r ) represents the presence

of an ambiguousness in the solutions.

Eq. (124) comes about by taking the divergence of Eq. (123) and taking into account

Eq. (122) and
→
∇ ·

→
B = 0. The latter is obvious from Eq. (126) and means the

absence of magnetic monopoles.

Thus we have obtained four coupled first-order differential equations, namely Eqs.

(122) and (123), with four variables φ(
→
r ) and

→
A(

→
r ). Once φ(

→
r ) and

→
A(

→
r ) are

determined from Eqs. (122) − (126), their associated quantities g(
→
r ) ,

→
Eφ (

→
r ) ,

→
Eg (

→
r ) ,

→
V (

→
r ) ,

→
BA (

→
r ) and

→
BV (

→
r ) can be computed from Eqs. (93), (95), (96),

(107), (109) and (110).

Let’s turn to the statement that Eqs. (122) and (123) are first-order differential
equations. Obviously, Eq. (123) comprises only first order derivatives. This is also
true, but maybe less obvious, for Eq. (122). To verify this we evaluate the divergence
term of Eq. (122) according to the well-known rules of vector calculus 18:

→
∇ ·

[→
E +

→
∇φ
φ

×
→
A

]
=

→
A ·

(
→
∇ ×

→
E +

→
∇φ
φ

)
−

(→
E +

→
∇φ
φ

)
·
(→
∇ ×

→
A
)

(127)

The term in the first bracket on the right-hand side yields

→
∇ ×

→
E +

→
∇φ
φ

=
→
∇ ×

→
E

φ
+

→
∇ ×

[
→
∇ ln

(
φ

φ0

)]
(128)

18 Examples of useful relations are
→
∇ · (

→
a ×

→
b ) =

→
b · (

→
∇ ×

→
a ) − →

a · (
→
∇ ×

→
b ) and

→
∇ × (s

→
a ) =

s (
→
∇ ×

→
a ) + (

→
∇ s) ×

→
a whereby

→
a =

→
a (

→
r ) and

→
b =

→
b (

→
r ) are any vector fields and s = s(

→
r ) is

any scalar field.
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whereby φ0 is a constant. Because the second term on the right-hand side vanishes
we obtain

→
∇ ×

→
E +

→
∇φ
φ

=
→
∇ ×

→
E

φ
=

1

φ

→
∇ ×

→
E +

[
→
∇
(

1

φ

)]
×

→
E (129)

According to Eq. (125) the electric field
→
E is curl-free, i.e.

→
∇ ×

→
E = 0 and we get

→
∇ ×

→
E +

→
∇φ
φ

=

[
→
∇
(

1

φ

)]
×

→
E = − 1

φ 2

(→
∇φ
)
×

→
E =

→
E ×

→
∇φ

φ 2
(130)

Inserting Eq. (130) into Eq. (127) leads to

→
∇ ·

[→
E +

→
∇φ
φ

×
→
A

]
=

→
A ·
(→
E ×

→
∇φ
)

φ 2
−

(→
E +

→
∇φ
)
·
(→
∇ ×

→
A
)

φ
(131)

Inserting Eq. (131) into Eq. (122) results in

→
A ·
(→
E ×

→
∇φ
)
− φ

(→
E +

→
∇φ
)
·
(→
∇ ×

→
A
)

= 0 (132)

Now it is obvious, because Eq. (132) is equivalent to Eq. (122), that the four Eqs.
(122) and (123) are indeed first-order differential equations. Compared to the eight
second-order differential equations (77) − (80) with eight variables and the five
second order differential equations (87) − (89) with five variables, the Eqs. (122) −
(124) represent a significant simplification because they are four first order
differential equations with four variables. Possibly there is an analytical solution of

Eqs. (122) − (124). In contrast to the (nearly) arbitrary scalar potential σ(
→
r ) used

in section 1, the related scalar potential g(
→
r ) in Eqs. (122) and (123) appears apriori

not as an ambiguous quantity. However, the presence of the scalar field ψ(
→
r ) and

rotational fields and operators in Eqs. (122) − (124) indicates the existence of an
ambiguousness in the overall solution.

We note that there is also another way to derive Eqs. (122) and (123), namely by

using Eqs. (81) and (82). Solving Eq. (81) for
→
ω yields

→
ω =

→
E +

→
∇φ+ ω0

→
A

φ
(133)

Inserting this into Eq. (82) and by using
→
A ×

→
A = 0 we get

−
→
E +

→
∇φ
φ

×
→
A +

→
∇ ×

→
A =

→
B (134)

which is identical to Eq. (123) if
→
∇ψ = 0. By taking the divergence on both sides of

Eq. (134) and by means of
→
∇ ·

→
B = 0, which follows from Eq. (126) and means the

absence of magnetic monopoles, we obtain Eq. (122).

The Eqs. (122) − (126) imply the following special cases:

• Absence of charge density ρ , i.e. ρ = 0 and thus
→
E = 0
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• Absence of current density
→
J , i.e.

→
J = 0 and thus

→
B = 0

• Absence of charge density ρ and current density
→
J , i.e. ρ = 0 and

→
J = 0 and

thus
→
E =

→
B = 0 . In this case the solutions of Eqs. (122) − (124) represent

possible level II vacuum potentials in the absence of level I fields. This case is
considered in section 2.4.

2.4 The equations for the level II potentials in the absence
of level I fields: The vacuum equations

Recently H. Eckardt and D. W. Lindstrom have published a paper about the
solutions of the latest set of electrodynamic ECE equations in the absence of level I
electric and magnetic fields [25]. They point to the existence of non-vanishing
vacuum potentials [25].

In the follwing we will study the former set of electro- and magnetostatic ECE

equations in the absence of level I electric and magnetic fields, i.e. for
→
B =

→
E = 0.

Their solutions indicate the existence of non-vanishing level II vacuum potentials and
fields.

The absence of a charge density ρ and current density
→
J , i.e. ρ = 0 and

→
J = 0 ,

implies
→
E =

→
B = 0 and Eqs. (122) − (124) result in[

→
∇ ln

(
φ

φ0

)]
·
(→
∇ ×

→
A
)

= 0 (135)

−
[
→
∇ ln

(
φ

φ0

)]
×

→
A +

→
∇ ×

→
A =

→
∇ψ (136)

∆ψ = 0 (137)

whereby φ0 is a constant. We recall that the scalar field ψ(
→
r ) represents the presence

of an ambiguousness in the solutions. The solutions of Eqs. (135) − (137) represent

possible vacuum potentials φ(
→
r ) and

→
A(

→
r ) in the absence of level I fields

→
E and

→
B.

We note that in electrodynamics for ρ = 0 and
→
J = 0 another type of vacuum

solutions exist, namely such with non-vanishing time-dependent fields
→
E and

→
B. In

electrostatics, however, ρ = 0 and
→
J = 0 always implies

→
E =

→
B = 0.

For
→
∇ψ = 0 the Eq. (135) is no longer independent from Eq. (136) because Eq.

(136) results in

→
∇ ×

→
A =

[
→
∇ ln

(
φ

φ0

)]
×

→
A (138)

Inserting this into Eq. (135) implies a scalar triple product which always vanishes
because two of the three involved vectors are equal.
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Thus for
→
∇ψ = 0 the level II vacuum potentials φ(

→
r ) and

→
A (

→
r ) in the absence of

level I fields are determined only by Eq. (138) which can also be written as(→
∇ξ

)
×

→
A =

→
∇ ×

→
A (139)

whereby

ξ(
→
r ) = ln

(
φ(

→
r )

φ0

)
(140)

We note that if a vector potential
→
A(

→
r ) satisfies Eqs. (139) and (140) or Eq. (138),

then because of
→
∇ ×

(→
∇ξ
)

= 0 and
(→
∇ξ
)
×
(→
∇ξ
)

= 0 also

→
A ′(

→
r ) =

→
A(

→
r ) + c

→
∇ ln

(
φ(

→
r )

φ0

)
(141)

is a solution of Eqs. (139) and (140) or Eq. (138) whereby c is a constant.

In the following sections 2.4.1 − 2.4.6 we present some solutions of Eqs. (135) −
(137), Eq. (138) or Eqs. (139) and (140).

From Eqs. (93) − (96) and (107) − (110) we infer for ρ = 0 and
→
J =

→
E =

→
B = 0 for

the level II potentials and fields the following relations which are associated with
Eqs. (135) − (137) and their solutions:

φ(
→
r ) = g(

→
r ) (142)

→
Eφ (

→
r ) =

→
Eg (

→
r ) = −

→
∇φ(

→
r ) (143)

→
A(

→
r ) =

→
V (

→
r ) (144)

→
BA (

→
r ) =

→
BV (

→
r ) =

→
∇ ×

→
A(

→
r ) (145)

We recall that these relations mean that all level I potentials and fields vanish, i.e.

β(
→
r ) = φ(

→
r )− g(

→
r ) = 0 (146)

→
E (

→
r ) =

→
Eφ (

→
r ) −

→
Eg (

→
r ) = 0 (147)

→
Λ(

→
r ) =

→
A(

→
r ) −

→
V (

→
r ) = 0 (148)

→
B (

→
r ) =

→
BA (

→
r ) −

→
BV (

→
r ) = 0 (149)
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2.4.1 Solutions with vanishing level II fields

The most simple solution of Eqs. (135) − (137) is given by

φ(
→
r ) = φ1 (150)

→
A(

→
r ) =

→
A0 (151)

ψ(
→
r ) = ψ0 (152)

whereby φ1 ,
→
A0 and ψ0 are constants. According to Eqs. (143) and (145) the

associated level II fields vanish, i.e.

→
Eφ (

→
r ) =

→
Eg (

→
r ) = −

→
∇φ(

→
r ) = 0 (153)

→
BA (

→
r ) =

→
BV (

→
r ) =

→
∇ ×

→
A(

→
r ) = 0 (154)

This case corresponds to the vacuum solutions of textbook electro- and
magnetostatics.

2.4.2 Solutions with vanishing level II magnetic field

Another solutions are those which imply

ψ(
→
r ) = ψ0 (155)

and a curl-free vector potential, i.e.

→
∇ ×

→
A(

→
r ) = 0 (156)

whereby ψ0 is a constant. In this case, according to Eq. (145), the associated level II
magnetic fields vanish:

→
BA (

→
r ) =

→
BV (

→
r ) =

→
∇ ×

→
A(

→
r ) = 0 (157)

From Eq. (156) we infer

→
A(

→
r ) =

→
∇ξ(

→
r ) (158)

whereby ξ(
→
r ) is any scalar field. In this case the cross product in Eq. (136) has to be

zero and thus the two vectors
→
∇ ln(φ/φ0) and

→
A are (anti)parallel to each other, i.e.

→
∇ ln

(
φ

φ0

)
= c

→
A = c

→
∇ξ(

→
r ) (159)

and thus

φ(
→
r ) = φ0 exp

(
c ξ(

→
r )
)

(160)
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whereby c is a constant. Inserting Eq. (160) into Eq. (143) yields for the associated
level II electric fields

→
Eφ (

→
r ) =

→
Eg (

→
r ) = −

→
∇φ(

→
r ) = − c φ0 exp

(
c ξ(

→
r )
) →
∇ξ(

→
r ) (161)

2.4.3 Solutions with constant level II magnetic field

Further solutions are those which imply the most simple case of
→
∇ ×

→
A(

→
r ) 6= 0 ,

namely

→
∇ ×

→
A(

→
r ) =

→
BA 0 (162)

whereby
→
BA 0 is a constant vector. In this case, according to Eq. (145), the

associated level II magnetic fields are

→
BA (

→
r ) =

→
BV (

→
r ) =

→
∇ ×

→
A(

→
r ) =

→
BA 0 (163)
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A simple example of a vector potential
→
A(

→
r ) which satisfies Eq. (162) is given by 19

→
A(

→
r ) =

BA 0

2

 − yx
0

 (173)

which yields

→
∇ ×

→
A(

→
r ) = BA 0

 0
0
1

 (174)

19 A somewhat more complicated vector potential
→
A (

→
r ) which implies a constant curl results

from the ansatz

→
A (

→
r ) = f(r)

 − yx
0

 (164)

which leads to

→
∇ ×

→
A =

[
2 f(r) + r

d f(r)

d r

] 0
0
1

 (165)

whereby f(r) is any function of

r =
√
x2 + y2 (166)

Eq. (165) represents a constant vector if

2 f(r) + r
d f

d r
= BA 0 (167)

whereby BA 0 is a constant. Eq. (167) corresponds to a differential equation of the type

d f

d r
+ u(r) f(r) = v(r) (168)

with

u(r) =
2

r
and v(r) =

BA 0

r
(169)

The general solution of Eq. (168) is well-known, namely

f(r) = exp

(
−
∫
u(r) dr

)[
f0 +

∫
v(r) exp

(∫
u(r) dr

)
dr

]
(170)

whereby f0 is a constant. Inserting Eqs. (169) into Eq. (170) results in

f(r) =
BA 0

2
+
f0
r 2

(171)

Inserting Eqs. (171) and (166) into Eqs. (164) and (165) yields

→
A (

→
r ) =

[
f0

x 2 + y 2
+
BA 0

2

] − yx
0

 ⇒
→
∇ ×

→
A = BA 0

 0
0
1

 (172)

whereby f0 and BA 0 are two parameters. Thus the curl of this vector potential
→
A (

→
r ) is a constant

vector which depends only on BA 0 but not on f0.
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whereby BA 0 = |
→
BA 0 | is a constant. Now let’s try to find a scalar potential φ(

→
r )

which solves Eqs. (135) − (137) when the vector potential
→
A(

→
r ) is given by Eq.

(173). Inserting Eq. (174) into Eq. (135) yields[
→
∇ ln

(
φ

φ0

)]
·
(→
∇ ×

→
A
)

= BA 0
∂

∂ z
ln

(
φ

φ0

)
= 0 (175)

For BA 0 6= 0 this implies

∂

∂ z
ln

(
φ

φ0

)
= 0 (176)

and thus φ(
→
r ) does not depend on z , i.e.

φ = φ(x, y) (177)

Inserting Eqs. (173) and (174) into Eq. (136) and taking into account Eq. (177)
leads to

0 =
∂ ψ

∂ x
(178)

0 =
∂ ψ

∂ y
(179)

−BA 0

2

[
x
∂

∂ x
ln

(
φ

φ0

)
+ y

∂

∂ y
ln

(
φ

φ0

)]
+BA 0 =

∂ ψ

∂ z
(180)

According to Eq. (177) the scalar potential φ does not depend on z and thus we infer
from Eqs. (178) − (180)

ψ = ψ0 + b z (181)

whereby ψ0 and b are constants. Thus Eq. (180) results in

x
∂

∂ x
ln

(
φ

φ0

)
+ y

∂

∂ y
ln

(
φ

φ0

)
=

2 (BA 0 − b )

BA 0

(182)

A solution of this partial differential equation is given by

ln

(
φ

φ0

)
=

2 (BA 0 − b )

BA 0

ln

(√
x 2 + y 2

r0

)
(183)

whereby r0 is a constant, and thus

φ(
→
r ) = φ0 exp

[
2 (BA 0 − b )

BA 0

ln

(√
x 2 + y 2

r0

)]

= φ0

(√
x 2 + y 2

r0

)2BA 0 − 2 b

BA 0

(184)
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Inserting Eq. (184) into Eq. (143) yields the associated level II electric fields, namely

→
Eφ (

→
r ) =

→
Eg (

→
r ) = −

→
∇φ(

→
r ) = −φ0

(√
x 2 + y 2

r0

)− 2 b

BA 0

 x
y
0

 (185)

2.4.4 Solutions with level II magnetic and electric fields which both
depend on the position vector

Another solutions are those which imply a vector potential
→
A(

→
r ) whose curl is not

constant. A relatively simple example of such a vector potential is

→
A(

→
r ) = a0

(
x 2 + y 2

)n − yx
0

 (186)

and thus

→
∇ ×

→
A(

→
r ) = 2 a0 (n+ 1)

(
x 2 + y 2

)n 0
0
1

 (187)

whereby a0 and n are constants. In this case, according to Eq. (145), the associated
level II magnetic fields are

→
BA (

→
r ) =

→
BV (

→
r ) =

→
∇ ×

→
A(

→
r ) = 2 a0 (n+ 1)

(
x 2 + y 2

)n 0
0
1

 (188)

Now let’s try to find a scalar potential φ(
→
r ) which solves Eqs. (135) − (137) when

the vector potential
→
A(

→
r ) is given by Eq. (186). Inserting Eq. (187) into Eq. (135)

yields [
→
∇ ln

(
φ

φ0

)]
·
(→
∇ ×

→
A
)

= 2 a0 (n+ 1)
(
x 2 + y 2

)n ∂

∂ z
ln

(
φ

φ0

)
= 0 (189)

For

a0 (n+ 1)
(
x 2 + y 2

)n 6= 0 (190)

Eq. (189) implies

∂

∂ z
ln

(
φ

φ0

)
= 0 (191)

and thus φ(
→
r ) does not depend on z , i.e.

φ = φ(x, y) (192)
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Inserting Eqs. (186) and (187) into Eq. (136) and taking into account Eq. (192)
leads to

∂ ψ

∂ x
= 0 (193)

∂ ψ

∂ y
= 0 (194)

∂ ψ

∂ z
=− a0

(
x 2 + y 2

)n [
x
∂

∂ x
ln

(
φ

φ0

)
+ y

∂

∂ y
ln

(
φ

φ0

)]
+ 2 a0 (n+ 1)

(
x 2 + y 2

)n (195)

For the sake of simplicity we choose

ψ = ψ0 (196)

whereby ψ0 is a constant. In this case Eq. (195) results in

x
∂

∂ x
ln

(
φ

φ0

)
+ y

∂

∂ y
ln

(
φ

φ0

)
= 2 (n+ 1) (197)

A solution of this partial differential equation is given by

ln

(
φ

φ0

)
= 2 (n+ 1) ln

(√
x 2 + y 2

r0

)
(198)

whereby r0 is a constant, and thus

φ(
→
r ) = φ0 exp

[
2 (n+ 1) ln

(√
x 2 + y 2

r0

)]

= φ0

(√
x 2 + y 2

r0

)2 (n+ 1)
(199)

Inserting Eq. (199) into Eq. (143) yields the associated level II electric fields, namely

→
Eφ (

→
r ) =

→
Eg (

→
r ) = −

→
∇φ(

→
r ) = −φ0

(√
x 2 + y 2

r0

)2n
 x

y
0

 (200)
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2.4.5 A class of more general solutions

Further solutions of Eq. (138) or (139) are the following. By inserting the ansatz

→
A(

→
r ) = a(

→
r )

 1
1
1

 (201)

into Eq. (139) we obtain

∂ a

∂ y
− ∂ a

∂ z
= a

∂ ξ

∂ y
− a ∂ ξ

∂ z
(202)

∂ a

∂ z
− ∂ a

∂ x
= a

∂ ξ

∂ z
− a ∂ ξ

∂ x
(203)

∂ a

∂ x
− ∂ a

∂ y
= a

∂ ξ

∂ x
− a ∂ ξ

∂ y
(204)

whereby a(
→
r ) is any scalar function. These equations are satisfied if

ξ(
→
r ) = ln

(
a(

→
r )

a0

)
(205)

whereby a0 is a constant. Because of Eq. (140) this implies

a(
→
r )

a0
=
φ(

→
r )

φ0

(206)

and thus Eq. (201) becomes

→
A(

→
r ) = φ(

→
r )

 1
1
1

 (207)

whereby φ(
→
r ) is any scalar potential 20. The vector potentials given by Eq. (207)

represent a general class of solutions of Eq. (138). By taking into account Eq. (141)
the most general type of these solutions is given by

→
A(

→
r ) = φ(

→
r )

 1
1
1

+ c
→
∇ ln

(
φ(

→
r )

φ0

)
(208)

whereby φ(
→
r ) is any scalar potential and φ0 and c are constants. Their associated

level II electric and magnetic fields are given by Eqs. (143) and (145), namely

→
Eφ (

→
r ) =

→
Eg (

→
r ) = −

→
∇φ(

→
r ) (209)

20 Also related vector potentials like
→
A (

→
r ) = φ(

→
r )

 1
0
0

 or
→
A (

→
r ) = φ(

→
r )

 1
1
0

 are solutions

of Eq. (138)
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→
BA (

→
r ) =

→
BV (

→
r ) =

→
∇ ×

→
A(

→
r ) =



∂ φ
∂ y −

∂ φ
∂ z

∂ φ
∂ z −

∂ φ
∂ x

∂ φ
∂ x −

∂ φ
∂ y


(210)

2.4.6 Another class of more general solutions

Another solutions of Eq. (138) or (139) are the following. By inserting the ansatz

→
A(

→
r ) = A0


b(y) c(z)

a(x) c(z)

a(x) b(y)

 (211)

into Eq. (139) we obtain

d b

d y
− d c

d z
= b(y)

∂ ξ

∂ y
− c(z)

∂ ξ

∂ z
(212)

d c

d z
− d a

d x
= c(z)

∂ ξ

∂ z
− a(x)

∂ ξ

∂ x
(213)

d a

d x
− d b

d y
= a(x)

∂ ξ

∂ x
− b(y)

∂ ξ

∂ y
(214)

whereby A0 is a constant and a(x), b(y) and c(z) are any functions which depend
only on x, y and z, repectively. These equations are satisfied if

ξ(
→
r ) = ln ( a(x) b(y) c(z) ) (215)

Because of Eq. (140) this implies

a(x) b(y) c(z) =
φ(

→
r )

φ0

(216)

and thus the scalar potential φ(
→
r ) is given by

φ(
→
r ) = φ0 a(x) b(y) c(z) (217)

whereby φ0 is a constant. The vector potentials and scalar potentials which are given
by Eqs. (211) and (217) represent a general class of solutions of Eq. (138). By taking
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into account Eq. (141) the most general type of these solutions is given by

→
A(

→
r ) = A0


b(y) c(z)

a(x) c(z)

a(x) b(y)

+ K0



1
a(x)

d a
d x

1
b(y)

d b
d y

1
c(z)

d c
d z


(218)

φ(
→
r ) = φ0 a(x) b(y) c(z) (219)

whereby A0, K0 and φ0 are constants and a(x), b(y) and c(z) are any functions which
depend only on x, y and z, repectively. Their associated level II electric and
magnetic fields are given by Eqs. (143) and (145), namely

→
Eφ (

→
r ) =

→
Eg (

→
r ) = −

→
∇φ(

→
r ) = −φ0



d a
d x b(y) c(z)

a(x)
d b
d y c(z)

a(x) b(y)
d c
d z


(220)

→
BA (

→
r ) =

→
BV (

→
r ) =

→
∇ ×

→
A(

→
r ) = A0



a(x)
d b
d y − a(x)

d c
d z

b(y)
d c
d z − b(y)

d a
d x

c(z)
d a
d x − c(z)

d b
d y


(221)

2.4.7 The meaning of the vacuum solutions

The solutions presented in the previous sections 2.4.1 − 2.4.6 represent possible level
II vacuum potentials and fields. We recall that according to Eqs. (142) − (149) the
levell II vacuum potentials and fields sum up to zero 21 at every location so that level
I potentials and fields do not appear. The solutions presented in the sections 2.4.1 −
2.4.6 represent an infinite number of different electromagnetic vacuum potentials and
fields. Within the framework of electro- and magnetostatics there are no obvious
(boundary) conditions which specify a concrete type. Therefore the solutions
presented in the sections 2.4.1 − 2.4.6 mean that electromagnetic vacuum potentials
and fields are possible or exist, even if their concrete form remains an open question.
Concerning this issue the following should be noted:

21 The feature that the level I potentials and fields emerge from a difference of two level II potentials
or fields, see e.g. Eqs. (93), (94), (107), (108) and (146) − (149), can also be described as a sum of

two quantities, for example β(
→
r ) = φ(

→
r )− g(

→
r ) = φ(

→
r ) + (− g(

→
r ) ) .
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• The consideration of electromagnetic vacuum states within the framework of
electro- and magnetostatics represents a rough approach and electrodynamics is
certainly more appropriate to address this issue.

• The actual vacuum states are not only determined by electromagnetic
potentials and fields but also by other contributions such as gravitational
potentials and fields, and their mutual interaction.

• Even if the vacuum constitutes the overwhelming part of the universe, matter
like electrically charged particles is also present. Therefore it seems likely that
the actual vacuum potentials and fields are influenced by the presence of
matter.

2.4.8 Hypothetical vacuum charge and current densities

According to Eqs. (142) − (149) the level II vacuum potentials and fields sum up to
zero 22 at every location so that level I potentials and fields do not appear 23.
Possibly, the presence of level II vacuum potentials and fields implies the existence of
level II or vacuum charge and current densities, similar to the level I potentials and

fields β ,
→
A ,

→
E and

→
B which are generated by the (level I) charge density ρ and

current densitiy
→
J . The Eqs. (142) − (149) suggest for the hypothetical vacuum

charge densities, ρφ and ρg , and hypothetical vacuum current densities,
→
JA and

→
J V ,

the relations 24

ρg(
→
r ) = −ρφ(

→
r ) (222)

→
J V (

→
r ) = −

→
JA (

→
r ) (223)

so that the total (level I) charge density ρ(
→
r ) and current density

→
J (

→
r ) vanishes:

ρ(
→
r ) = ρφ(

→
r ) + ρg(

→
r ) = 0 (224)

→
J (

→
r ) =

→
JA (

→
r ) +

→
J V (

→
r ) = 0 (225)

It appears presently not clear how to compute the hypothetical vacuum charge and

current density, ρφ(
→
r ) and

→
JA (

→
r ) , from the vacuum potentials φ(

→
r ) and

→
A(

→
r ). One

possibility is to assume that the relation between the hypothetical vacuum charge

22 The feature that the level I potentials and fields emerge from a difference of two level II potentials
or fields, see e.g. Eqs. (93), (94), (107), (108) and (146) − (149), can also be described as a sum of

two quantities, for example β(
→
r ) = φ(

→
r )− g(

→
r ) = φ(

→
r ) + (− g(

→
r ) ) .

23 The presence of (electrically charged) matter, i.e. charge density ρ 6= 0 and/or current density
→
J 6= 0 , breaks this symmetry and level I potentials and fields emerge.

24 The feature that the level I potentials and fields emerge from a difference of two level II potentials
or fields, see e.g. Eqs. (93), (94), (107), (108) and (146) − (149), can also be described as a sum of

two quantities, for example β(
→
r ) = φ(

→
r )− g(

→
r ) = φ(

→
r ) + (− g(

→
r ) ) .
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and current density and the vacuum potentials is of the type given by Eqs. (89) and
(106). However, the decoupled linear seconder-order differential equations (89) and
(106) describe the behavior of level I quantities, whereas the vacuum potentials are
level II quantities which are specified by the coupled non-linear first-order differential
equations (135) − (137) or (139) − (140). Thus the relationship between the vacuum
potentials and the hypothetical vacuum charge and current density remains an open
question.

Furthermore, the consideration of electromagnetic vacuum states within the
framework of electro- and magnetostatics represents a rough approach and
electrodynamics is certainly more appropriate to address this issue.

2.5 The equations for the level II potentials in the absence
of level I magnetic fields

In the following section we present level II potentials φ(
→
r ) and

→
A(

→
r ) which solve

Eqs. (122) − (124) when there is no current density, i.e.
→
J (

→
r ) = 0 , and thus no

level I magnetic field, i.e.
→
B (

→
r ) = 0.

In Eqs. (122) − (124) we choose for the sake of simplicity
→
∇ψ = 0 . Then for

→
B = 0 Eqs. (122) and (123) result in

→
∇ ·

[→
E +

→
∇φ
φ

×
→
A

]
= 0 (226)

→
E +

→
∇φ
φ

×
→
A =

→
∇ ×

→
A (227)

Inserting Eq. (227) into Eq. (226) yields

→
∇ ·
[ →
∇ ×

→
A
]

= 0 (228)

which is valid for any
→
A (

→
r ). Thus, if there is a scalar potential φ(

→
r ) and a vector

potential
→
A(

→
r ) which solves Eq. (227), then also Eq. (226) is fulfilled.

2.5.1 Presentation of a solution for any charge density

Now let’s try to find a solution of Eq. (227) by the assumption or ansatz that the
first term on the left-hand side of Eq. (227) can be represented as a gradient of a

scalar field ξ(
→
r ), i.e.

→
E +

→
∇φ
φ

=
→
∇ξ(

→
r ) (229)

In this case Eq. (227) is of the same type as Eq. (139). Solutions of Eq. (139) are
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presented in sections 2.4.1 − 2.4.6. For example, from section 2.4.5 we know that

→
A(

→
r ) = κ(

→
r )

 1
1
1

 (230)

is a solution of (→
∇ξ

)
×

→
A =

→
∇ ×

→
A (231)

when

ξ(
→
r ) = ln

(
κ(

→
r )
)

(232)

whereby κ(
→
r ) is any scalar function. Inserting Eq. (232) into Eq. (229) leads to

→
E +

→
∇φ = φ

→
∇ lnκ (233)

We recall that
→
E = −

→
∇β is considered as a known function which is given by the

charge density ρ , see Eqs. (94) and (93). By inserting
→
E = −

→
∇β into Eq. (233)

we obtain

−
→
∇β +

→
∇φ = φ

→
∇ lnκ (234)

Now we try to find a level II scalar potential φ that solves Eq. (234) which comprises
the three following equations:

∂ φ

∂ x
− φ ∂

∂ x
lnκ =

∂ β

∂ x
(235)

∂ φ

∂ y
− φ ∂

∂ y
lnκ =

∂ β

∂ y
(236)

∂ φ

∂ z
− φ ∂

∂ z
lnκ =

∂ β

∂ z
(237)

φ is specified by three equations. This means that φ is over-determined and therefore
it could be that no solution exists. However, in the case of Eqs. (235) − (237) we
will now show that there are solutions φ when κ is chosen appropriately,

The solution φ of the separate Eqs. (235), (236) and (237) are known, see Eqs. (168)
and (170) in footnote 19 on page 34, namely

φ = exp

[
−
∫ (
− ∂

∂ x
lnκ

)
dx

]{
φ0 +

∫
∂ β

∂ x
exp

[ ∫ (
− ∂

∂ x
lnκ

)
dx

]
dx

}
(238)

φ = exp

[
−
∫ (
− ∂

∂ y
lnκ

)
dy

]{
φ0 +

∫
∂ β

∂ y
exp

[ ∫ (
− ∂

∂ y
lnκ

)
dy

]
dy

}
(239)
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φ = exp

[
−
∫ (
− ∂

∂ z
lnκ

)
dz

]{
φ0 +

∫
∂ β

∂ z
exp

[ ∫ (
− ∂

∂ z
lnκ

)
dz

]
dz

}
(240)

whereby φ0 is a constant. These three equations result in

φ = κ

(
φ0 +

∫
1

κ

∂ β

∂ x
dx

)
(241)

φ = κ

(
φ0 +

∫
1

κ

∂ β

∂ y
dy

)
(242)

φ = κ

(
φ0 +

∫
1

κ

∂ β

∂ z
dz

)
(243)

If we choose

κ(
→
r ) =

β(
→
r )

β0
(244)

whereby β0 is a constant, then Eqs. (241) − (243) become

φ =
φ0

β0
β + β

∫
∂

∂ x
ln

(
β

β0

)
dx =

φ0

β0
β + β ln

(
β

β0

)
(245)

φ =
φ0

β0
β + β

∫
∂

∂ y
ln

(
β

β0

)
dy =

φ0

β0
β + β ln

(
β

β0

)
(246)

φ =
φ0

β0
β + β

∫
∂

∂ z
ln

(
β

β0

)
dz =

φ0

β0
β + β ln

(
β

β0

)
(247)

They represent a solution for φ because the three different expressions lead finally to
the same result, namely

φ =

[
φ0

β0
+ ln

(
β

β0

)]
β (248)

By inserting Eq. (248) into Eq. (93) and by means of Eqs. (95) and (96) we get the

level II quantities g ,
→
Eφ and

→
Eg , namely

g = φ− β =

[
φ0

β0
− 1 + ln

(
β

β0

)]
β (249)

→
Eφ = −

→
∇φ = −

[
φ0

β0
+ 1 + ln

(
β

β0

)]
→
∇β (250)

→
Eg = −

→
∇g = −

[
φ0

β0
+ ln

(
β

β0

)]
→
∇β (251)
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Now let’s compute the level II magnetic quantities which result from the level II

vector potential
→
A which is given by Eq. (230). Inserting Eq. (244) into Eq. (230)

yields

→
A =

β

β0

 1
1
1

 (252)

By taking into account Eqs. (227) − (232), (244) and (138) − (141) the expression of

the level II vector potential
→
A which solves Eqs. (227) and (229) can be extended to

→
A =

β

β0

 1
1
1

+ a0
→
∇ ln

(
β

β0

)
(253)

whereby a0 is a constant.

The level II magnetic fields
→
BA and

→
BV can be calculated by our assumption

→
B = 0

and Eqs. (108) − (110) and (253), namely

→
BA =

→
BV =

→
∇ ×

→
A =

1

β0



∂β

∂ y
− ∂β

∂ z

∂β

∂ z
− ∂β

∂ x

∂β

∂ x
− ∂β

∂ y


(254)

We summarize the results of this section:
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We have considered a charge density ρ(
→
r ) 6= 0 in the absence of a current density

→
J (

→
r ) , i.e.

→
J (

→
r ) = 0 . According to Eqs. (93) − (96) and (107) − (110) the

resulting level I quantities, namely the scalar potential β(
→
r ) , vector potential

→
Λ(

→
r )

, electric field
→
E (

→
r ) and magnetic field

→
B (

→
r ) are

β(
→
r ) = φ(

→
r )− g(

→
r ) =

1

4π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R (255)

→
E (

→
r ) =

→
Eφ (

→
r ) −

→
Eg (

→
r ) = −

→
∇
[
φ(

→
r )− g(

→
r )
]

= −
→
∇β(

→
r ) (256)

→
Λ(

→
r ) =

→
A(

→
r ) −

→
V (

→
r ) = 0 (257)

→
B (

→
r ) =

→
BA (

→
r ) −

→
BV (

→
r ) =

→
∇ ×

[→
A(

→
r ) −

→
V (

→
r )
]

=
→
∇ ×

→
Λ(

→
r ) = 0 (258)

For Eq. (227), which determines the level II potentials φ(
→
r ) and

→
A (

→
r ) , a solution

was found by means of an ansatz or assumption which is given by Eq. (229). The

corresponding level II quantities, namely the scalar potential φ(
→
r ) , electric field

→
Eφ (

→
r ) , vector potential

→
A(

→
r ) and magnetic field

→
BA (

→
r ) , are

φ(
→
r ) =

[
φ0

β0
+ ln

(
β(

→
r )

β0

)]
β(

→
r ) (259)

→
Eφ (

→
r ) = −

→
∇φ(

→
r ) = −

[
φ0

β0
+ 1 + ln

(
β(

→
r )

β0

)]
→
∇β(

→
r ) (260)

→
A(

→
r ) =

β(
→
r )

β0

 1
1
1

+ a0
→
∇ ln

(
β(

→
r )

β0

)
(261)

→
BA (

→
r ) =

→
BV (

→
r ) =

→
∇ ×

→
A(

→
r ) =

1

β0



∂β(
→
r )

∂ y
− ∂β(

→
r )

∂ z

∂β(
→
r )

∂ z
− ∂β(

→
r )

∂ x

∂β(
→
r )

∂ x
− ∂β(

→
r )

∂ y


(262)

whereby φ0 , β0 and a0 are constants.

The results indicate that an electric charge density or an electric charge is
accompanied by non-vanishing level II magnetic quantities like the vector potential
→
A(

→
r ) and magnetic field

→
BA (

→
r ) , even if a current density

→
J (

→
r ) and a level I

magnetic field
→
B (

→
r ) are absent, i.e.

→
J (

→
r ) =

→
B (

→
r ) = 0 . We note that the level II
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potentials which are described by Eqs. (259) and (261), and their associated level II
fields, represent just one of many possible solutions of Eq. (227). It seems that the
ECE electro- and magnetostatics does not provide constraints which favors one
specific solution for the level II quantities.

2.5.2 A further type of level II potentials which might appear as another
solution and why they do not represent a genuine solution

coming soon ...

2.6 Summary

By the introduction of two further quantities, namely the scalar potential g(
→
r ) and

vector potential
→
V (

→
r ), the original electro- and magnetostatic ECE equations (77) −

(82) were transformed into a set of equations which allow a direct comparison with
the equations of textbook electro- and magnetostatics. The transformed ECE
equations reveal that ECE electro- and magnetostatics represents an extension of
textbook electro- and magnetostatics.
They are compatible with each other in the sense that textbook electro- and
magnetostatics represents a special case of ECE electro- and magnetostatics.

On the level of the quantities

scalar potential β(
→
r ) = φ(

→
r )− g(

→
r ) (263)

electric field
→
E (

→
r ) = −

→
∇β(

→
r ) =

→
Eφ (

→
r ) −

→
Eg (

→
r ) (264)

vector potential
→
Λ(

→
r ) =

→
A(

→
r ) −

→
V (

→
r ) (265)

magnetic field
→
B (

→
r ) =

→
∇ ×

→
Λ(

→
r ) =

→
BA (

→
r ) −

→
BV (

→
r ) (266)

textbook and ECE electro- and magnetostatics are equivalent. This means that the

scalar potential β(
→
r ), electric field

→
E (

→
r ), vector potential

→
Λ(

→
r ) and magnetic field

→
B (

→
r ) is identical with the scalar potential, electric field, vector potential and

magnetic field of textbook electro- and magnetostatics, respectively. In ECE electro-
and magnetostatics these so-called level I potentials and fields appear as difference

between two so-called level II quantitites which both depend on
→
r , whereas in

textbook electro- and magnetostatics they result from always one spatially

dependent function which corresponds to the case
→
∇g = 0 and

→
∇ ×

→
V = 0, i.e.

g(
→
r ) = g0 and

→
V =

→
∇α(

→
r ) whereby g0 is a constant and α(

→
r ) any scalar field.

The transformed ECE equations decompose into two sets of equations and
quantities. The first set corresponds to the equations of textbook electro- and
magnetostatics which determine the level I potentials and fields. The second set of
equations specify the level II potentials and fields.
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The level I potentials β(
→
r ) and

→
Λ(

→
r ) are determined by the four well-known linear

decoupled second-order differential equations of textbook electro- and
magnetostatics, namely

∆ β = − ρ
ε0

(267)

∆
→
Λ = −µ0

→
J (268)

whereby ρ(
→
r ) is the charge density and

→
J (

→
r ) the current density. For spatially

limited charge and current densities their solution is well-known, namely 25 26

β(
→
r ) = φ(

→
r )− g(

→
r ) =

1

4 π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R (269)

→
Λ(

→
r ) =

→
A(

→
r ) −

→
V (

→
r ) =

µ0

4π

∫∫∫ →
J (

→
R)

| →r −
→
R |

d 3R (270)

The level II potentials φ(
→
r ) and

→
A(

→
r ) are determined by the following four

non-linear coupled first-order differential equations

→
∇ ·

[→
E +

→
∇φ
φ

×
→
A

]
= 0 (271)

−
→
E +

→
∇φ
φ

×
→
A +

→
∇ ×

→
A =

→
B (272)

whereby the fields

→
E (

→
r ) =

→
Eφ (

→
r ) −

→
Eg (

→
r ) = −

→
∇β(

→
r ) =

1

4π ε0

∫∫∫
ρ(

→
R) (

→
r −

→
R)

| →r −
→
R | 3

d 3R (273)

→
B (

→
r ) =

→
BA (

→
r ) −

→
BV (

→
r ) =

→
∇ ×

→
Λ(

→
r ) =

µ0

4π

∫∫∫ →
J (

→
R)× (

→
r −

→
R)

| →r −
→
R | 3

d 3R (274)

25 The most general solution of Eq. (267) is given by

β(
→
r ) =

1

4π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R + βhom(
→
r )

whereby βhom(
→
r ) is a solution of the Laplace equation ∆βhom = 0

26 The most general solution of Eq. (268) is given by

→
Λ (

→
r ) =

µ0

4π

∫∫∫ →
J (

→
R)

| →r −
→
R |

d 3R +
→
Λhom (

→
r )

whereby the components of
→
Λhom (

→
r ) are solutions of the Laplace equations ∆

→
Λhom = 0
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are considered as given functions because they depend exclusively on the charge

density ρ(
→
r ) or current density

→
J (

→
r ).

A solution of Eqs. (271) and (272) for the most general case is presently not known.

However, solutions are presented for the two special cases
→
B (

→
r ) = 0 as well as

→
B (

→
r ) =

→
E (

→
r ) = 0 , see section 2.5.1, especially Eqs. (255) − (262), and section 2.4.

The latter case and its solutions represent possible level II vacuum potentials and
fields in the absence of level I fields.

The scalar potential φ(
→
r ) and vector potential

→
A(

→
r ) in the original equations (77) −

(82) and transformed equations (271) and (272) is not identical with the scalar

potential β(
→
r ) and vector potential

→
Λ(

→
r ) of textbook electro- and magnetostatics,

respectively. φ(
→
r ) and

→
A(

→
r ) are rather part of another set of quantities, namely the

level II potentials and fields

φ(
→
r ) , g(

→
r ) ,

→
Eφ (

→
r ) ,

→
Eg (

→
r ) ,

→
A(

→
r ) ,

→
V (

→
r ) ,

→
BA (

→
r ) ,

→
BV (

→
r )

which describe a possible physical reality beyond that of textbook electro- and
magnetostatics.

The level I potentials β(
→
r ) and

→
Λ(

→
r ) are determined by the decoupled linear

differential equations (267) and (268), whereas the level II potentials φ(
→
r ) and

→
A(

→
r )

are specified by the coupled non-linear differential equations (271) and (272). Thus
for the level I potentials and fields there is no coupling between electric and magnetic
quantities and features, whereas for the level II potentials and fields there is a
coupling between electric and magnetic quantities and features. We raise the
question if the level II potentials and fields, or their effects, are physically detectable
(with present technology) and if they carry the same physcial qualities like the level I
potentials and fields.

3 The latest set of the electro- and magnetostatic

ECE equations

3.1 The set of equations in its original form

Recent ECE papers report on the discovery of additional equations, the so-called
antisymmetry constraints [6, 23, 24]. These additional equations lead to a
modification of the electrodynamic as well as electro- and magnetostatic ECE
equations [6, 23, 24].

The latest set of the electro- and magnetostatic ECE equations, see e.g. Ref. [22], is
given by the former equations (77) − (82) and the so-called antisymmetry
constraints, namely 27

27 Eqs. (275) − (284) refer to the assumption that the so-called polarization index can be omitted,
i.e. one polarization only, see e.g. Ref. [22].
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Field equations in terms of potentials:

→
∇ ·
(→
ω ×

→
A
)

= 0 (275)

→
∇ ×

(→
ω φ − ω0

→
A
)

= 0 (276)

∆φ −
→
∇ ·
(→
ω φ − ω0

→
A
)

= − ρ
ε0

(277)

→
∇ ×

(→
∇ ×

→
A −

→
ω ×

→
A
)

= µ0

→
J (278)

Antisymmetry constraints:

→
∇φ =

→
ω φ + ω0

→
A (279)

∂A3

∂ y
+
∂A2

∂ z
+ ω2A3 + ω3A2 = 0 (280)

∂A3

∂ x
+
∂A1

∂ z
+ ω1A3 + ω3A1 = 0 (281)

∂A2

∂ x
+
∂A1

∂ y
+ ω1A2 + ω2A1 = 0 (282)

whereby
→
A =

 A1

A2

A3

 and
→
ω =

 ω1

ω2

ω3


Field-potential relations:

→
B =

→
∇ ×

→
A −

→
ω ×

→
A (283)

→
E = −

→
∇φ +

→
ω φ − ω0

→
A (284)

The electric field
→
E can also be represented in another way. By inserting Eq. (279)

into Eq. (284) we get

→
E = − 2ω0

→
A (285)

Another expression for the electric field
→
E can be obtained by solving Eq. (279) for

ω0

→
A and inserting it into Eq. (284). This leads to

→
E = − 2

→
∇φ + 2

→
ω φ (286)

Eqs. (275) − (284) merge into the equations of textbook electro- and magnetostatics
if the antisymmetry constraints (279) − (282) are omitted and
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• →
ω φ =

→
A ω0

which implies
→
ω ×

→
A = 0 because in this case

→
ω and

→
A are (anti)parallel to

each other − this condition is reported in Ref [13] for the electrodynamic
equations and works also for the electro- and magnetostatic case

or

• →
ω = 0 and ω0 = 0

Eqs. (275) − (282) represent 14 equations to determine the 8 quantities φ ,
→
A , ω0

and
→
ω , i.e. there are more equations than variables. In the following we will consider

and investigate these equations in more detail.

3.2 Results and discussion of the transformed equations

Eqs. (280) − (282) mean that the vector spin connection
→
ω is entirely specified by

the vector potential
→
A. They can be solved for

→
ω =

 ω1

ω2

ω3

 and by somewhat

algebra we obtain

ω1 =
1

2A2A3

(
A1
∂A3

∂ y
+ A1

∂A2

∂ z
− A2

∂A3

∂ x
− A2

∂A1

∂ z
− A3

∂A2

∂ x
− A3

∂A1

∂ y

)
(287)

ω2 =
1

2A1A3

(
−A1

∂A3

∂ y
− A1

∂A2

∂ z
+ A2

∂A3

∂ x
+ A2

∂A1

∂ z
− A3

∂A2

∂ x
− A3

∂A1

∂ y

)
(288)

ω3 =
1

2A1A2

(
−A1

∂A3

∂ y
− A1

∂A2

∂ z
− A2

∂A3

∂ x
− A2

∂A1

∂ z
+ A3

∂A2

∂ x
+ A3

∂A1

∂ y

)
(289)

In Eqs. (275), (278), and (283) appears the vector product
→
ω ×

→
A . By means of

Eqs. (287) − (289) we can express the vector product

→
ω ×

→
A =


ω2A3 − ω3A2

ω3A1 − ω1A3

ω1A2 − ω2A1

 (290)

in terms of
→
A =

 A1

A2

A3

 and get

51



→
ω ×

→
A =



A2

A1

∂A3

∂ x
+
A2

A1

∂A1

∂ z
− A3

A1

∂A2

∂ x
− A3

A1

∂A1

∂ y

A3

A2

∂A2

∂ x
+
A3

A2

∂A1

∂ y
− A1

A2

∂A3

∂ y
− A1

A2

∂A2

∂ z

A1

A3

∂A3

∂ y
+
A1

A3

∂A2

∂ z
− A2

A3

∂A3

∂ x
− A2

A3

∂A1

∂ z


(291)

By inserting Eq. (283) into Eq. (278) we obtain

→
∇ ×

→
B = µ0

→
J (292)

which is the same relation between magnetic field
→
B and current density

→
J as in

textbook magneto- and electrostatics. From Eq. (275) we infer that
→
ω ×

→
A can be

written as

→
ω ×

→
A =

→
∇ ×

→
V (293)

whereby
→
V =

→
V (

→
r ) is another vector potential which depends in some way on the

vector potential
→
A =

→
A(

→
r ) 28.

We introduce another vector potential
→
Λ =

→
Λ(

→
r ) by

→
Λ =

→
A −

→
V (294)

From Eqs. (283), (293), and (294) it follows that the magnetic field
→
B can be

represented as

→
B =

→
∇ ×

→
Λ =

→
∇ ×

(→
A −

→
V
)

=
→
∇ ×

→
A −

→
∇ ×

→
V

=
→
∇ ×

→
A −

→
ω ×

→
A

(295)

With respect to the magnetic field
→
B, current density

→
J and vector potential

→
Λ, the

Eqs. (292) and (295) are the same as those in textbook magneto- and electrostatics.

Thus
→
Λ coresponds to the vector potential used in textbook magneto- and

electrostatics. By inserting Eq. (295) into Eq. (292) and by means of Eq. (83) we get

→
∇ × (

→
∇ ×

→
Λ) =

→
∇ (

→
∇ ·

→
Λ) − ∆

→
Λ = µ0

→
J (296)

28 Actually, from Eqs. (291), (293), (51) and (52) it is possible to determine how
→
V (

→
r ) depends

on
→
A (

→
r ) . Equation (291) tells us how

→
ω (

→
r ) ×

→
A (

→
r ) depends on

→
A (

→
r ) . Let’s call the right-hand

side of Eq. (291) as
→
G
(→
A (

→
r )
)

. Then from Eqs. (291) and (293) we obtain
→
∇ ×

→
V (

→
r ) =

→
G
(→
A (

→
r )
)

. By using this relation it follows from Eqs. (51) and (52) that
→
V (

→
r ) is

given by
→
V (

→
r ) = − →

r ×
[ ∫ 1

0

→
G
(→
A (s

→
r )
)
s ds

]
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By using the so-called Coulomb gauge 29, i.e.
→
∇ ·

→
Λ = 0 , Eq. (296) becomes

∆
→
Λ = −µ0

→
J (297)

For a spatially limited current density
→
J (

→
r ), i.e.

→
J (

→
r )→ 0 for r →∞, the vector

potential
→
Λ =

→
A −

→
V which solves Eq. (297) is well-known, namely 30

→
Λ(

→
r ) =

→
A(

→
r ) −

→
V (

→
r ) =

µ0

4π

∫∫∫ →
J (

→
r )

| →r −
→
R |

d 3R (298)

By inserting Eq. (298) into Eq. (295) the magnetic field
→
B results in

→
B (

→
r ) =

→
BA (

→
r ) −

→
BV (

→
r ) =

→
∇ ×

[→
A(

→
r ) −

→
V (

→
r )
]

=
→
∇ ×

→
Λ(

→
r )

=
µ0

4π

∫∫∫ →
J (

→
R)× (

→
r −

→
R)

| →r −
→
R | 3

d 3R

(299)

whereby we have introduced the magnetic fields
→
BA and

→
BV by

→
BA =

→
∇ ×

→
A (300)

→
BV =

→
∇ ×

→
V =

→
ω ×

→
A (301)

According to the integral term in Eq. (298) and (299) the vector potential
→
Λ(

→
r ) and

magnetic magnetic field
→
B (

→
r ) is identical with the vector potential and magnetic

field of textbook magneto- and electrostatics, respectively. Thus, on the level of the

• vector potential
→
Λ(

→
r ) =

→
A(

→
r ) −

→
V (

→
r ) and

29 The quantity
→
B =

→
∇ ×

→
Λ and the equation

→
∇ ×

→
∇ ×

→
Λ =

→
J remains invariant under

a so-called gauge transformation
→
Λ →

→
Γ =

→
Λ +

→
∇ η whereby η is any scalar field. By using Eq.

(83) we can write
→
∇ ×

→
∇ ×

(→
Λ +

→
∇η
)

=
→
J as

→
∇
(→
∇ ·
(→

Λ +
→
∇η
))
− ∆

(→
Λ +

→
∇η
)

=
→
J . Assuming that

→
∇ ·
(→

Λ +
→
∇η
)

= 0 , which is always

possible by using an appropriate function η , then we get

∆
(→

Λ +
→
∇η
)

= ∆
→
Γ = −

→
J . For a spatially limited current density

→
J ,

i.e.
→
J (

→
r )→ 0 for r →∞ , the well-known solution

→
Γ of this Poisson equation is given by

→
Γ (

→
r ) =

1

4π

∫∫∫ →
J (

→
r )

| →r −
→
R |

d 3R . The choice or gauge
→
∇ ·
(→

Λ +
→
∇η
)

=
→
∇ ·

→
Γ = 0 is usually

called Coulomb gauge.

30 The most general solution of Eq. (297) is given by

→
Λ (

→
r ) =

µ0

4π

∫∫∫ →
J (

→
R)

| →r −
→
R |

d 3R +
→
Λhom (

→
r )

whereby the components of
→
Λhom (

→
r ) are solutions of the Laplace equations ∆

→
Λhom = 0
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• magnetic field
→
B (

→
r ) =

→
BA (

→
r ) −

→
BV (

→
r )

textbook and ECE magneto- and electrostatics are equivalent. However, in ECE
Theory

• the vector potential
→
Λ(

→
r ) emerges from a difference between two vector

potentials whose curl do not vanish

• the magnetic field
→
B (

→
r ) emerges from a difference between two magnetic fields

which both depend on
→
r

whereas in textbook magneto- and electrostatics they result always from one
spatially dependent function.

The so-called level II quantities, namely the vector potentials
→
A(

→
r ) and

→
V (

→
r ) and

magnetic fields
→
BA (

→
r ) and

→
BV (

→
r ) , point to the existence of a possible physical

reality beyond that of textbook magneto- and electrostatics. We raise the questions
if these level II potentials and fields are physically measurable and if they cause the

same physcial effects like the level I quantities
→
Λ(

→
r ) and

→
B (

→
r ). Possibly, the level II

potentials and fields, or their effects, are physically not detectable (with present
technology) or their experimental verification requires special circumstances.

We emphasize that ECE and textbook magneto- and electrostatics usually use the

same symbol
→
A for the vector potential. However, according to the just mentioned

considerations, which are based on a view suggested by Eqs. (298) and (299), they

do not represent the same quantity and have to be distinguished. In this paper
→
A

represents the vector potential which appears in the original magneto- and

electrostatic ECE equations (279) − (284) and
→
Λ corresponds to the vector potential

of textbook magneto- and electrostatics.

According to Eqs. (294), (295), (299) − (301) the case of

→
V (

→
r ) =

→
∇α(

→
r ) (302)

, whereby α(
→
r ) is any scalar field, implies

→
∇ ×

→
V (

→
r ) = 0 (303)

→
Λ(

→
r ) =

→
A(

→
r ) −

→
∇α(

→
r ) (304)

→
BV (

→
r ) = 0 (305)

→
B (

→
r ) =

→
BA (

→
r ) =

→
∇ ×

→
A(

→
r ) =

→
∇ ×

→
Λ(

→
r ) (306)

and corresponds to the scenario of textbook magneto- and electrostatics.
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Now let’s consider the equations which are associated with the electric field
→
E and

the scalar potential φ. By taking the curl of Eq. (279) we get

→
∇ × (

→
ω φ + ω0

→
A) = 0 (307)

By comparing Eq. (307) with Eq. (276) we infer that

→
∇ × (

→
ω φ) = 0 (308)

→
∇ × (ω0

→
A) = 0 (309)

and thus

→
ω φ =

→
∇g (310)

ω0

→
A =

1

2

→
∇β (311)

whereby g = g(
→
r ) and β = β(

→
r ) are scalar fields. The factor 1

2
in Eq. (311)

represents just a convenience which appears useful for the later resulting expression
of β .

Eqs. (308) and (309) might involve some difficulties. Because the vector potential
→
A

and the vector spin connenction
→
ω are specified by Eqs. (331) − (333) and (287) −

(289), respectively, Eqs. (308) and (309) indicate that the two remaining variables φ

and ω0 are determined by them. However, for a given
→
ω and

→
A the Eq. (308) and

(309) represent three equations to determine the scalar potential φ and the scalar
spin connection ω0 , respectively. Therefore it seems not clear if there is always a
scalar field φ and ω0 which satisfies Eq. (308) and (309), respectively. Moreover,
assuming that φ can be determined from Eq. (308), then it appears implausible that
Eq. (277), which also comprises the scalar potential φ, is not involved in its
determination. We can circumvent these possible difficulties in the following way. By
inserting Eq. (311) into Eq. (279) we get

→
∇φ =

→
ω φ +

1

2

→
∇β (312)

By taking the divergence on both sides of Eq. (312) and using
→
∇ ·

→
∇ = ∆ we obtain

→
∇ · (

→
ω φ) = ∆φ− 1

2
∆β (313)

Inserting Eqs. (313) and (311) into Eq. (277) leads to

∆φ− (∆φ− 1

2
∆β) +

1

2

→
∇ · (

→
∇β) = − ρ

ε0
(314)

and by means of
→
∇ ·

→
∇ = ∆ this results in

∆β = − ρ
ε0

(315)
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The insertion of Eq. (310) into Eq. (312) reveals that β(
→
r ) represents a scalar

potential which emerges from the difference of the scalar potentials φ(
→
r ) and g(

→
r ),

i.e.

1

2

→
∇β =

→
∇ (φ− g) (316)

and thus

1

2
β(

→
r ) = φ0 + φ(

→
r )− g(

→
r ) (317)

whereby φ0 is a constant. For the sake of simplicity we choose φ0 = 0 and thus

β(
→
r ) = 2

[
φ(

→
r )− g(

→
r )
]

(318)

For a spatially limited charge density ρ(
→
r ), i.e. ρ(

→
r )→ 0 for r →∞, the solution

β(
→
r ) of Eq. (315) is well-known and by taking into account Eq. (318) we obtain 31

β(
→
r ) = 2

[
φ(

→
r )− g(

→
r )
]

=
1

4π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R (319)

By inserting Eq. (319) into Eq. (311) we get

ω0

→
A =

1

2

→
∇β =

→
∇ (φ− g) = − 1

2

1

4π ε0

∫∫∫
(
→
r −

→
R) ρ(

→
R)

| →r −
→
R | 3

d 3R (320)

The electric field
→
E =

→
E (

→
r ) results from an insertion of Eq. (320) into Eq. (285),

namely

→
E (

→
r ) = − 2 ω0(

→
r )

→
A(

→
r ) =

→
Eφ (

→
r ) −

→
Eg (

→
r ) = −

→
∇β(

→
r )

= − 2
→
∇
[
φ(

→
r ) − g(

→
r )
]

=
1

4 π ε0

∫∫∫
(
→
r −

→
R) ρ(

→
R)

| →r −
→
R | 3

d 3R

(321)

whereby we have introduced the electric fields
→
Eφ and

→
Eg by

→
Eφ = −2

→
∇φ (322)

→
Eg = −2

→
∇g (323)

31 The most general solution of Eq. (315) is given by

β(
→
r ) =

1

4π ε0

∫∫∫
ρ(

→
R)

| →r −
→
R |

d 3R + βhom(
→
r )

whereby βhom(
→
r ) is a solution of the Laplace equation ∆βhom = 0
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According to the intergral term in Eq. (319) and (321) the scalar potential β(
→
r ) and

electric field
→
E (

→
r ) is identical with the scalar potential and electric field of textbook

electro- and magnetostatics, respectively. Thus, on the level of the scalar potential

β(
→
r ) and electric field

→
E (

→
r ) textbook and ECE electro- and magnetostatics are

equivalent. However, in ECE electro- and magnetostatics the scalar potential β(
→
r )

and electric field
→
E (

→
r ) emerge from a difference between two quantities which both

depend on
→
r , whereas in textbook electro- and magnetostatics they result from

always one spatially dependent function.

The so-called level II quantities, namely the scalar potentials φ(
→
r ) and g(

→
r ) and the

electric fields
→
Eφ (

→
r ) and

→
Eg (

→
r ) , point to the existence of a possible physical reality

beyond that of textbook magneto- and electrostatics. We raise the questions if these
level II potentials and fields are physically measurable and if they cause the same

physcial effects like the level I quantities β(
→
r ) and

→
E (

→
r ). Possibly, the level II

potentials and fields, or their effects, are physically not detectable (with present
technology) or their experimental verification requires special circumstances.

We emphasize that ECE and textbook electro- and magnetostatics usually use the
same symbol φ for the scalar potential. However, according to the just mentioned
considerations, which are based on a view suggested by Eqs. (319) and (321), they
do not represent the same quantity and have to be distinguished. In this paper φ
represents the scalar potential which appears in the original electro- and
magnetostatic ECE equations (279) − (284) and β corresponds to the scalar
potential of textbook electro- and magnetostatics.

According to Eqs. (319) and (321) − (323) the case of

g(
→
r ) = g0 (324)

, whereby g0 is a constant, implies

β(
→
r ) = 2φ(

→
r )− 2 g0 (325)

→
Eg (

→
r ) = 0 (326)

→
E (

→
r ) = −

→
∇β(

→
r ) = −2

→
∇φ(

→
r ) (327)

and corresponds to the scenario of textbook magneto- and electrostatics.

3.3 The equations for the level II potentials

Eqs. (299) and (291) can be used to establish a set of non-linear, first-order

differential equations for the vector potential
→
A. By inserting Eq. (291) into Eq.

(283) we get

A1B1 = A1

(
∂A3

∂ y
− ∂A2

∂ z

)
− A2

(
∂A3

∂ x
+
∂A1

∂ z

)
+ A3

(
∂A2

∂ x
+
∂A1

∂ y

)
(328)
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A2B2 = A2

(
∂A1

∂ z
− ∂A3

∂ x

)
− A3

(
∂A2

∂ x
+
∂A1

∂ y

)
+ A1

(
∂A3

∂ y
+
∂A2

∂ z

)
(329)

A3B3 = A3

(
∂A2

∂ x
− ∂A1

∂ y

)
− A1

(
∂A3

∂ y
+
∂A2

∂ z

)
+ A2

(
∂A3

∂ x
+
∂A1

∂ z

)
(330)

By adding Eqs. (329) and (330), Eqs. (328) and (329), and Eqs. (328) and (330),
respectively, we obtain

2A2
∂A1

∂ z
− 2A3

∂A1

∂ y
− A2B2 − A3B3 = 0 (331)

2A1
∂A3

∂ y
− 2A2

∂A3

∂ x
− A1B1 − A2B2 = 0 (332)

2A3
∂A2

∂ x
− 2A1

∂A2

∂ z
− A1B1 − A3B3 = 0 (333)

Furthermore, the vector potential

→
A(

→
r ) =

 A1(
→
r )

A2(
→
r )

A3(
→
r )


which solves Eqs. (331) − (333) must additionally satisfy Eq. (275) which is via
Eq. (291) given by

→
∇ ·
(→
ω ×

→
A
)

=
∂

∂ x

(
A2

A1

∂A3

∂ x
+
A2

A1

∂A1

∂ z
− A3

A1

∂A2

∂ x
− A3

A1

∂A1

∂ y

)

+
∂

∂ y

(
A3

A2

∂A2

∂ x
+
A3

A2

∂A1

∂ y
− A1

A2

∂A3

∂ y
− A1

A2

∂A2

∂ z

)

+
∂

∂ z

(
A1

A3

∂A3

∂ y
+
A1

A3

∂A2

∂ z
− A2

A3

∂A3

∂ x
− A2

A3

∂A1

∂ z

)
= 0

(334)

In Eqs. (331) − (333) the level I magnetic field

→
B (

→
r ) =

 B1(
→
r )

B2(
→
r )

B3(
→
r )

 =
µ0

4π

∫∫∫ →
J (

→
R)× (

→
r −

→
R)

| →r −
→
R | 3

d 3R (335)

(see Eq. (299) ) is considered as a given function because it depends exclusively on

the current density
→
J (

→
r ) . Eqs. (331) − (334) are four equations for the three

components A1(
→
r ) , A2(

→
r ) and A3(

→
r ) of the level II vector potential

→
A (

→
r ) . Thus

→
A (

→
r ) is possibly over-determined and we raise the question if always a solution

exits. Further studies are necessary to clarify this issue.
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We note that the Eqs. (331) − (334), which specify the level II vector potential
→
A(

→
r ) , are four first-order non-linear coupled differential equations, whereas Eq.

(297), which determines the level I vector potential
→
Λ(

→
r ), represents three

second-order linear decoupled differential equations.

Once the level II vector potential

→
A(

→
r ) =

 A1(
→
r )

A2(
→
r )

A3(
→
r )


is determined from Eqs. (331) − (334), the associated level II quantities

→
V (

→
r ) ,

→
BA (

→
r ) and

→
BV (

→
r ) can be computed from Eqs. (298), (300) and (301).

In the following we present several forms of equations which specify the level II scalar

potential φ(
→
r ) .

The scalar potential φ(
→
r ) can be determined by Eq. (286), namely

−2
→
∇φ + 2φ

→
ω =

→
E (336)

whereby

• the vector spin connection
→
ω (

→
r ) is via Eqs. (287) − (289) entirely specified

by the vector potential
→
A (

→
r ) which is in turn determined by Eqs. (331) −

(334)

• the electric field
→
E (

→
r ), which is given by Eq. (321), is considered as a given

function because it depends exclusively on the charge density ρ(
→
r )

Eq. (336) comprises three equations for the specification of φ(
→
r ). Thus φ(

→
r ) is

possibly over-determined and we raise the question if always a solution exits. How-
ever, by taking into account Eqs. (310) and (321) we realize that each of the three
terms of Eq. (336) is a gradient of a scalar function. This feature probably favors

the existence of solutions. Nevertheless, it remains an open question if
→
ω (

→
r ) which

is specified by
→
A (

→
r ) via Eqs. (287) − (289) and (331) − (334) always ensures the

existence of a solution of Eq. (336).

There are another forms of equations for φ(
→
r ). By means of

→
ω (

→
r ) =

 ω1(
→
r )

ω2(
→
r )

ω3(
→
r )

 (337)

→
E (

→
r ) =

 E1(
→
r )

E2(
→
r )

E3(
→
r )

 (338)
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Eq. (336) can be written as

− 2
∂ φ

∂ x
+ 2φω1 = E1 (339)

− 2
∂ φ

∂ y
+ 2φω2 = E2 (340)

− 2
∂ φ

∂ z
+ 2φω3 = E3 (341)

These are first-order differential equations of the type

d φ

d xi
+ ui(x, y, z)φ(x, y, z) = vi(x, y, z) (342)

whereby

x1 = x x2 = y x3 = z i = 1, 2, 3

ui(x, y, z) = −ωi(x, y, z) (343)

vi(x, y, z) = −Ei(x, y, z)

2
(344)

The solution of Eq. (339) is well-known, namely

φ(x, y, z) =

exp

(
−
∫
ui(x, y, z) dxi

)[
φ0 i +

∫
vi(x, y, z) exp

(∫
ui(x, y, z) dxi

)
dxi

] (345)

whereby φ0 i are constants. By inserting Eqs. (343), (344) and (321) and into Eq.
(345) we get
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φ(
→
r ) = exp

(∫
ωi(

→
r ) dxi

)[
φ0 i +

1

2

∫
∂ β(

→
r )

∂ xi
exp

(
−
∫
ωi(

→
r ) dxi

)
dxi

]
(346)

whereby

x1 = x x2 = y x3 = z i = 1, 2, 3

and the three components ωi(
→
r ) are specified by the vector potential

→
A(

→
r ) =

 A1(
→
r )

A2(
→
r )

A3(
→
r )


via Eqs. (287) − (289). The vector potential

→
A (

→
r ) is in turn specified by Eqs.

(331) − (334). The level I scalar potential β(
→
r ) , which is given by Eq. (319), is

considered as a given function because it depends exclusively on the charge density

ρ(
→
r ) . Because of i = 1, 2, 3 the Eq. (346) comprises three different expressions. It

represents a solution only if all of them lead to the same function φ(
→
r ) . It remains

an open question if this condition can always be accomplished for those
→
ω (

→
r ) which

are specified by
→
A(

→
r ) via Eqs. (287) − (289) and (331) − (334).

Eq. (346) represents a solution if

ωi(
→
r ) =

∂

∂ xi
ln
β(

→
r )

β0
(347)

and

φ0 1 = φ0 2 = φ0 3 = φ0 (348)

whereby φ0 and β0 are constants. Inserting Eqs. (347) and (348) into Eq. (346)
yields the same expression for i = 1, 2, 3 , namely

φ(
→
r ) =

β(
→
r )

β0

[
φ0 +

β0
2

ln
β(

→
r )

β0

]
(349)

In this case φ(
→
r ) does not depend on

→
ω (

→
r ) and

→
A(

→
r ) which are determined by Eqs.

(287) − (289) and (331) − (334).

Presently we do not know if Eq. (347) is the only way which leads to a solution. By
taking into account Eqs. (287) − (289) we see that Eq. (347) involves another

contraints for the vector potential
→
A(

→
r ) , namely

∂

∂ x
ln
β

β0
=

1

2A2A3

(
A1
∂A3

∂ y
+ A1

∂A2

∂ z
− A2

∂A3

∂ x
− A2

∂A1

∂ z
− A3

∂A2

∂ x
− A3

∂A1

∂ y

) (350)
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∂

∂ y
ln
β

β0
=

1

2A1A3

(
−A1

∂A3

∂ y
− A1

∂A2

∂ z
+ A2

∂A3

∂ x
+ A2

∂A1

∂ z
− A3

∂A2

∂ x
− A3

∂A1

∂ y

) (351)

∂

∂ z
ln
β

β0
=

1

2A1A2

(
−A1

∂A3

∂ y
− A1

∂A2

∂ z
− A2

∂A3

∂ x
− A2

∂A1

∂ z
+ A3

∂A2

∂ x
+ A3

∂A1

∂ y

) (352)

whereby β(
→
r ) , which is given by Eq. (319), is considered as a given function because

it depends exclusively on the charge density ρ(
→
r ) . Eqs. (350) − (352) and (331) −

(334) represent altogether seven equations for the three components A1(
→
r ) , A2(

→
r )

and A3(
→
r ) of the vector potential

→
A(

→
r ) . Thus

→
A(

→
r ) appears over-determined and

we raise the question if (always) a solution exists. Further studies are necessary to
clarify this issue.

The potential difficulties which are associated with the determination of φ(
→
r ) can

possibly be circumvented by the following approach which results in only one

equation for φ(
→
r ) . By taking the divergence of Eq. (336) and by using the relation

→
E = −

→
∇β from Eq. (321) we obtain

∆φ(
→
r ) −

→
∇ ·
[→
ω (

→
r )φ(

→
r )
]

=
1

2
∆β(

→
r ) (353)

Inserting Eq. (315) into Eq. (353) yields

∆φ(
→
r ) −

→
∇ ·
[→
ω (

→
r )φ(

→
r )
]

= −1

2

ρ(
→
r )

ε0
(354)

whereby the vector spin connection
→
ω (

→
r ) is via Eqs. (287) − (289) entirely specified

by the vector potential
→
A (

→
r ) which is in turn determined by the current density

→
J (

→
r ) via Eqs. (331) − (334). In contrast to Eq. (336), which involves three first-

order differential equations, the Eq. (354) represents one second-order differential
equation.

Once the level II scalar potential φ(
→
r ) is computed from Eq. (336), (346) or (354),

the associated level II quantities g(
→
r ) ,

→
Eφ (

→
r ) and

→
Eg (

→
r ) can be computed from

Eqs. (319), (322) and (323).

3.4 The equations for the level II potentials in the absence
of level I fields: The vacuum equations

Recently H. Eckardt and D. W. Lindstrom have published a paper about the
solutions of the latest set of electrodynamic ECE equations in the absence of level I
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electric and magnetic fields [25]. They point to the existence of non-vanishing
vacuum potentials [25].

In the following we will study the latest set of electro- and magnetostatic ECE

equations in the absence of level I electric and magnetic fields, i.e. for
→
B =

→
E = 0.

Their solutions indicate the existence of non-vanishing level II vacuum potentials and
fields.

The absence of a charge density ρ and current density
→
J , i.e. ρ = 0 and

→
J = 0 ,

implies
→
E =

→
B = 0 and Eqs. (331) − (334) and (336) result in

A2
∂A1

∂ z
− A3

∂A1

∂ y
= 0 (355)

A1
∂A3

∂ y
− A2

∂A3

∂ x
= 0 (356)

A3
∂A2

∂ x
− A1

∂A2

∂ z
= 0 (357)

→
∇ ·
(→
ω ×

→
A
)

=
∂

∂ x

(
A2

A1

∂A3

∂ x
+
A2

A1

∂A1

∂ z
− A3

A1

∂A2

∂ x
− A3

A1

∂A1

∂ y

)

+
∂

∂ y

(
A3

A2

∂A2

∂ x
+
A3

A2

∂A1

∂ y
− A1

A2

∂A3

∂ y
− A1

A2

∂A2

∂ z

)

+
∂

∂ z

(
A1

A3

∂A3

∂ y
+
A1

A3

∂A2

∂ z
− A2

A3

∂A3

∂ x
− A2

A3

∂A1

∂ z

)
= 0

(358)

→
∇φ = φ

→
ω (359)

whereby the vector spin connection
→
ω (

→
r ) is via Eqs. (287) − (289) entirely specified

by the vector potential
→
A(

→
r ) which is in turn determined by Eqs. (355) − (357).

Eqs. (355) − (359) specify the level II vacuum potentials φ(
→
r ) and

→
A (

→
r ) in the

absence of level I fields.

We note that the coupled non-linear first-order differential equations (355) − (357)
can also be written in a shortened notation, namely

Ai
∂Ak
∂ xj

− Aj
∂Ak
∂ xi

= 0 (360)

whereby

• x1 = x x2 = y x3 = z

• i = 1, 2, 3 j = 1, 2, 3 k = 1, 2, 3
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From Eqs. (298) − (301), (319) and (321) − (323) we infer for ρ = 0 and
→
J =

→
E =

→
B = 0 for the level II potentials and fields the following relations which are

associated with Eqs. (355) − (359) and their solutions:

g(
→
r ) = φ(

→
r ) (361)

→
Eφ (

→
r ) =

→
Eg (

→
r ) = −

→
∇φ(

→
r ) (362)

→
V (

→
r ) =

→
A(

→
r ) (363)

→
BA (

→
r ) =

→
BV (

→
r ) =

→
∇ ×

→
A(

→
r ) (364)

We recall that these relations mean that all level I potentials and fields vanish, i.e.

β(
→
r ) = φ(

→
r )− g(

→
r ) = 0 (365)

→
E (

→
r ) =

→
Eφ (

→
r ) −

→
Eg (

→
r ) = 0 (366)

→
Λ(

→
r ) =

→
A(

→
r ) −

→
V (

→
r ) = 0 (367)

→
B (

→
r ) =

→
BA (

→
r ) −

→
BV (

→
r ) = 0 (368)

3.4.1 A class of general solutions

The type of solutions of Eqs. (355) − (357) published in Ref. [25] indicate that a
general class of solution is given by

→
A(

→
r ) =

 A1(
→
r )

A2(
→
r )

A3(
→
r )

 = F (
→
k ·

→
r )

→
k (369)

whereby F = F (s) is an arbitrary function of s =
→
k ·

→
r and

→
k =

 k1
k2
k3

 (370)

a constant vector. Eq. (369) was used as starting point to search for other and/or
more general solutions. This resulted in the finding of two types of general solutions
of Eqs. (355) − (357) which will be presented in this and the following section.

The first type of general solutions of Eqs. (355) − (357) is given by

A1(x, y, z) = b ′
1(x) F ( b1(x) + b2(y) + b3(z) ) (371)

A2(x, y, z) = b ′
2(y) F ( b1(x) + b2(y) + b3(z) ) (372)
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A3(x, y, z) = b ′
3(z) F ( b1(x) + b2(y) + b3(z) ) (373)

or with respect to Eq. (360) in the shortened notation

Ai(x1, x2, x3) = b ′
i(xi) F ( b1(x1) + b2(x2) + b3(x3) ) (374)

or in vector representation

→
A(

→
r ) = F

(
s(

→
r )
) →
∇s(

→
r ) = F ( b1(x) + b2(y) + b3(z) )

 b ′
1(x)
b ′
2(y)
b ′
3(z)


=

→
∇
∫
F (s) ds

(375)

whereby F (s) = F
(
s(

→
r )
)

is any function of

s = s(
→
r ) = b1(x) + b2(y) + b3(z) (376)

and b1(x) , b2(y) and b3(z) are any functions which depend only on x, y and z,
respectively, and

b ′
1(x) =

d b1(x)

d x
(377)

b ′
2(y) =

d b2(y)

d y
(378)

b ′
3(z) =

d b3(z)

d z
(379)

By inserting Eqs. (371) − (373) into Eqs. (287) − (289) we obtain the associated

vector spin connection
→
ω, namely

→
ω (

→
r ) = −F

′( b1(x) + b2(y) + b3(z) )

F ( b1(x) + b2(y) + b3(z) )

 b ′
1(x)
b ′
2(y)
b ′
3(z)

 (380)

or

→
ω (

→
r ) = −

→
∇ F

(
s(

→
r )
)

F
(
s(

→
r )
) (381)

or

→
ω (

→
r ) = −

→
∇ ln

F
(
s(

→
r )
)

F0

 (382)
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and by means of Eq. (375)

→
ω (

→
r ) = −

F ′
(
s(

→
r )
)

[
F
(
s(

→
r )
) ] 2 →

A(
→
r ) (383)

whereby F0 is a constant and

F ′(s) =
dF

d s
(384)

Eqs. (383), (382) and (375) imply that
→
A and

→
ω are (anti)parallel to each other and

curl-free, i.e.

→
ω ×

→
A =

→
∇ ×

→
A =

→
∇ ×

→
ω = 0 (385)

and thus Eq. (358) is also satisfied.

Now let’s consider the scalar potential φ(
→
r ) . By inserting Eq. (382) into Eq. (359)

we get

→
∇φ
φ

= −
→
∇F
F

⇔
→
∇ ln

φ

φ0

= −
→
∇ ln

F

F0

(386)

whereby φ0 and F0 are constants and thus

φ
(
s(

→
r )
)

=
φ0 F0

F
(
s(

→
r )
) (387)

The insertion of Eq. (387) into Eqs. (375) reveals the following relation between the

vector potential
→
A(

→
r ) and scalar potential φ(

→
r ):

→
A(

→
r ) = φ0 F0

→
∇s(

→
r )

φ
(
s(

→
r )
) =

φ0 F0

φ ( b1(x) + b2(y) + b3(z) )

 b ′
1(x)
b ′
2(y)
b ′
3(z)


= φ0 F0

→
∇
∫

ds

φ(s)

(388)

whereby the scalar potential

φ(s) = φ
(
s(

→
r )
)

is any function of s = s(
→
r ) = b1(x) + b2(y) + b3(z) (389)

and b1(x) , b2(y) and b3(z) are any functions which depend only on x, y and z,
respectively, and b ′

1(x) , b ′
2(y) and b ′

3(z) denote their derivative as defined by Eqs.
(377) − (379).

Eq. (389) and (388) represent possible level II vacuum potentials in the absence of
level II fields. Please note the validity of Eqs. (361) − (368) in this case.
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The insertion of Eq. (386) or (387) into Eqs. (380) − (383) reveals the following

relations between the vector spin connection
→
ω, scalar potential φ and vector

potential
→
A:

→
ω (

→
r ) =

φ ′ ( b1(x) + b2(y) + b3(z) )

φ ( b1(x) + b2(y) + b3(z) )

 b ′
1(x)
b ′
2(y)
b ′
3(z)

 (390)

→
ω (

→
r ) =

→
∇ ln

φ
(
s(

→
r )
)

φ0

 (391)

and by means of Eq. (388)

→
ω (

→
r ) = φ ′

(
s(

→
r )
) →
A(

→
r ) (392)

whereby φ0 is a constant and

φ ′(s) =
d φ

d s
(393)

Eqs. (392), (391) and (388) imply that
→
A and

→
ω are (anti)parallel to each other and

curl-free, i.e.

→
ω ×

→
A =

→
∇ ×

→
A =

→
∇ ×

→
ω = 0 (394)

and thus Eq. (358) is also satisfied.

3.4.2 Another class of general solutions

Another type of general solutions of Eqs. (355) − (357) is given by

A1(x, y, z) = c ′
1(x)c2(y)c3(z) G( c1(x)c2(y)c3(z) ) (395)

A2(x, y, z) = c1(x)c ′
2(y)c3(z) G( c1(x)c2(y)c3(z) ) (396)

A3(x, y, z) = c1(x)c2(y)c ′
3(z) G( c1(x)c2(y)c3(z) ) (397)

or with respect to Eq. (360) in the shortened notation

Ai(x1, x2, x3) = c ′
i(xi)cj(xj)ck(xk) G( c1(x1)c2(x2)c3(x3) ) (398)

or in vector representation
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→
A(

→
r ) = G

(
v(

→
r )
) →
∇v(

→
r ) = G( c1(x)c2(y)c3(z) )

 c ′
1(x)c2(y)c3(z)
c1(x)c ′

2(y)c3(z)
c1(x)c2(y)c ′

3(z)


=

→
∇
∫
G(v) dv

(399)

whereby G(v) = G
(
v(

→
r )
)

is any function of

v = v(
→
r ) = c1(x)c2(y)c3(z) (400)

and c1(x) , c2(y) and c3(z) are any functions which depend only on x, y and z,
respectively, and

c ′
1(x) =

d c1(x)

d x
(401)

c ′
2(y) =

d c2(y)

d y
(402)

c ′
3(z) =

d c3(z)

d z
(403)

Eq. (399) and Eqs. (395)− (398) represent possible level II vacuum vector potentials
in the absence of level II fields. Please note the validity of Eqs. (361) − (368) in
this case.

By inserting Eqs. (395) − (397) into Eq. (291) we find by somewhat algebra

→
ω ×

→
A = 0 (404)

and thus Eq.
→
ω (

→
r ) and

→
A(

→
r ) are (anti)parallel to each other and Eq. (358) is also

satisfied.

By inserting Eqs. (395) − (397) into Eqs. (287) − (289) we obtain the associated
vector spin connection

→
ω =

 ω1

ω2

ω3

 (405)

, namely

ω1(
→
r ) = − c

′
1(x)

c1(x)

[
1 + c ′

1(x) c2(y) c3(z)
G ′( c1(x)c2(y)c3(z) )

G( c1(x)c2(y)c3(z) )

]
(406)

ω2(
→
r ) = − c

′
2(y)

c2(y)

[
1 + c1(x) c ′

2(y) c3(z)
G ′( c1(x)c2(y)c3(z) )

G( c1(x)c2(y)c3(z) )

]
(407)

ω3(
→
r ) = − c

′
3(z)

c3(z)

[
1 + c1(x) c2(y) c ′

3(z)
G ′( c1(x)c2(y)c3(z) )

G( c1(x)c2(y)c3(z) )

]
(408)
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whereby

G ′(v) =
dG

d v
(409)

or

ω1(
→
r ) = − ∂ ln ( c1(x)c2(y)c3(z) )

∂ x

[
1 +

∂

∂ x
ln

(
G ( c1(x)c2(y)c3(z) )

G01

)]
(410)

ω2(
→
r ) = − ∂ ln ( c1(x)c2(y)c3(z) )

∂ y

[
1 +

∂

∂ y
ln

(
G ( c1(x)c2(y)c3(z) )

G02

)]
(411)

ω3(
→
r ) = − ∂ ln ( c1(x)c2(y)c3(z) )

∂ z

[
1 +

∂

∂ z
ln

(
G ( c1(x)c2(y)c3(z) )

G03

)]
(412)

whereby G01 , G02 and G03 are constants. This vector spin connection appears
mathematically more complicated than that of the type 1 solution which is given by
Eqs. (380) − (383). Eqs. (399) and (406) − (408) or (410) − (412) can be used to

establish a relation between
→
A(

→
r ) and

→
ω (

→
r ) .

In the previous section we have established for the type 1 solution a relation between

the vector potential
→
A(

→
r ) and the scalar potential φ(

→
r ), namely Eq. (388). One can

try to find a related connection between
→
A(

→
r ) and φ(

→
r ) for the type 2 solution,

namely by inserting Eqs. (410) − (412) into Eq. (359) which results in

∂

∂ x
ln

(
φ

φ01

)
= − ∂ ln v

∂ x

[
1 +

∂

∂ x
ln

(
G

G01

)]
(413)

∂

∂ y
ln

(
φ

φ02

)
= − ∂ ln v

∂ y

[
1 +

∂

∂ y
ln

(
G

G02

)]
(414)

∂

∂ z
ln

(
φ

φ03

)
= − ∂ ln v

∂ z

[
1 +

∂

∂ z
ln

(
G

G03

)]
(415)

whereby G = G(v) = G
(
v(

→
r )
)

is any function of

v = v(
→
r ) = c1(x)c2(y)c3(z) (416)

and c1(x) , c2(y) and c3(z) are any functions which depend only on x, y and z,
respectively, and φ01 , φ02 and φ03 are constants.

If there is a scalar potential φ(
→
r ) which simultaneously solves Eqs. (413) − (415),

then that φ(x, y, z) can be used together with Eq. (399) to establish a relation

between
→
A(

→
r ) and φ(

→
r ).
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3.4.3 Two open questions

In the previous sections 3.4.1 and 3.4.2 we have presented two general types of
solutions of Eqs. (355) − (358), namely the level II vacuum vector potentials which
are represented by Eqs. (388) and (399). These level II vacuum vector potentials
→
A(

→
r ) are curl-free, i.e. their associated level II vacuum magnetic fields

→
BA (

→
r ) and

→
BV (

→
r ) vanish:

→
BA (

→
r ) =

→
BV (

→
r ) =

→
∇ ×

→
A = 0 (417)

In contrast to that, among the solutions of the vacuum equations of the former set of
the electro- and magnetostatic ECE equations, see sections 2.4.3 − 2.4.6, there are
level II vacuum vector potentials with a non-vanishing curl and thus non-vanishing
level II vacuum magnetic fields.

We raise the question if another types of solutions of Eqs. (355) − (358) exist. If yes:
Are there also such solutions whose curl do not vanish ?

3.4.4 The meaning of the vacuum solutions

The solutions presented in the previous sections 3.4.1 and 3.4.2 represent possible
level II vacuum potentials and fields. We recall that according to Eqs. (361) − (368)
the levell II vacuum potentials and fields sum up to zero 32 at every location so that
level I potentials and fields do not appear. The solutions presented in the sections
3.4.1 and 3.4.2 represent an infinite number of different electromagnetic vacuum
potentials and fields. Within the framework of electro- and magnetostatics there are
no obvious (boundary) conditions which specify a concrete type. Therefore the
solutions presented in the sections 3.4.1 and 3.4.2 mean that electromagnetic vacuum
potentials and fields are possible or exist, even if their concrete form remains an open
question. Concerning this issue the following should be noted:

• The consideration of electromagnetic vacuum states within the framework of
electro- and magnetostatics represents a rough approach and electrodynamics is
certainly more appropriate to address this issue.

• The actual vacuum states are not only determined by electromagnetic
potentials and fields but also by other contributions such as gravitational
potentials and fields, and their mutual interaction.

• Even if the vacuum constitutes the overwhelming part of the universe, matter
like electrically charged particles is also present. Therefore it seems likely that
the actual vacuum potentials and fields are influenced by the presence of
matter.

32 The feature that the level I potentials and fields emerge from a difference of two level II potentials
or fields, see e.g. Eqs. (319), (321), (298), (299) and (365) − (368), can also be described as a sum

of two quantities, for example β(
→
r ) = φ(

→
r )− g(

→
r ) = φ(

→
r ) + (− g(

→
r ) ) .
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3.4.5 Hypothetical vacuum charge and current densities

According to Eqs. (361) − (368) the level II vacuum potentials and fields sum up to
zero 33 at every location so that level I potentials and fields do not appear 34.
Possibly, the presence of level II vacuum potentials and fields implies the existence of
level II or vacuum charge and current densities, similar to the level I potentials and

fields β ,
→
A ,

→
E and

→
B which are generated by the (level I) charge density ρ and

current densitiy
→
J . The Eqs. (361) − (368) suggest for the hypothetical vacuum

charge densities, ρφ and ρg , and hypothetical vacuum current densities,
→
JA and

→
J V ,

the relations 35

ρg(
→
r ) = −ρφ(

→
r ) (418)

→
J V (

→
r ) = −

→
JA (

→
r ) (419)

so that the total (level I) charge density ρ(
→
r ) and current density

→
J (

→
r ) vanishes:

ρ(
→
r ) = ρφ(

→
r ) + ρg(

→
r ) = 0 (420)

→
J (

→
r ) =

→
JA (

→
r ) +

→
J V (

→
r ) = 0 (421)

It appears presently not clear how to compute the hypothetical vacuum charge and

current density, ρφ(
→
r ) and

→
JA (

→
r ) , from the vacuum potentials φ(

→
r ) and

→
A(

→
r ). One

possibility is to assume that the relation between the hypothetical vacuum charge
and current density and the vacuum potentials is of the type given by Eqs. (315) and
(297). However, the decoupled linear seconder-order differential equations (315) and
(297) describe the behavior of level I quantities, whereas the vacuum potentials are
level II quantities which are specified by the partly coupled non-linear first-order
differential equations (355) − (359). Thus the relationship between the vacuum
potentials and the hypothetical vacuum charge and current density remains an open
question.

Furthermore, the consideration of electromagnetic vacuum states within the
framework of electro- and magnetostatics represents a rough approach and
electrodynamics is certainly more appropriate to address this issue.

33 The feature that the level I potentials and fields emerge from a difference of two level II potentials
or fields, see e.g. (319), (321), (298), (299) and (365) − (368), can also be described as a sum of two

quantities, for example β(
→
r ) = φ(

→
r )− g(

→
r ) = φ(

→
r ) + (− g(

→
r ) ) .

34 The presence of (electrically charged) matter, i.e. charge density ρ 6= 0 and/or current density
→
J 6= 0 , breaks this symmetry and level I potentials and fields emerge.

35 The feature that the level I potentials and fields emerge from a difference of two level II potentials
or fields, see e.g. (319), (321), (298), (299) and (365) − (368), can also be described as a sum of two

quantities, for example β(
→
r ) = φ(

→
r )− g(

→
r ) = φ(

→
r ) + (− g(

→
r ) ) .
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3.5 The equations for the level II potentials in the absence
of level I magnetic fields

In the following we present level II potentials φ(
→
r ) and

→
A(

→
r ) which solve Eqs. (331)

− (334) and (336) in the absence of a level I magnetic field, i.e. for
→
B (

→
r ) = 0.

3.5.1 Presentation of a solution for any charge density

coming soon ...

3.6 A potential inconsistency in the equations and a brief
list of some items whose consideration might lead to its
elimination

coming soon ...

3.7 Summary

coming soon ...

4 The energy density of the fields and potentials

Recently H. Eckardt and D. W. Lindstrom have published a paper about the
solutions of the latest set of electrodynamic ECE equations in the absence of level I
electric and magnetic fields [25]. That paper comprises also a discussion about the
energy density of the vacuum potentials [25].

In textbook electromagnetism the volumetric energy density uE(
→
r ) of the electric

field
→
E (

→
r ) and the volumetric energy density uB(

→
r ) of the magnetic field

→
B (

→
r ) are

given by

uE(
→
r ) =

ε0
2

∣∣∣→E (
→
r )
∣∣∣ 2 (422)

uB(
→
r ) =

1

2µ0

∣∣∣→B (
→
r )
∣∣∣ 2 (423)

The total energy density u(
→
r ) is given by the sum

u(
→
r ) = uE(

→
r ) + uB(

→
r ) =

ε0
2

∣∣∣→E (
→
r )
∣∣∣ 2 +

1

2µ0

∣∣∣→B (
→
r )
∣∣∣ 2 (424)

In textbook electromagnetism the energy density u is related to the continuity
equation and the electromagnetic energy momentum tensor T αβ whereby T 0 0 = u.

The level I potentials and fields emerge from a difference or sum 36 between two

36 The feature that the level I potentials and fields emerge from a difference of two level II potentials
or fields can also be described as a sum of two quantities, for example

β(
→
r ) = φ(

→
r )− g(

→
r ) = φ(

→
r ) + (− g(

→
r ) ) .
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associated level II potentials or fields which both depend on
→
r , see e.g. Eqs. (93),

(94), (107) and (108):

• scalar potential β(
→
r ) = φ(

→
r )− g(

→
r )

• electric field
→
E (

→
r ) =

→
Eφ (

→
r ) −

→
Eg (

→
r )

• vector potential
→
Λ(

→
r ) =

→
A(

→
r ) −

→
V (

→
r )

• magnetic field
→
B (

→
r ) =

→
BA (

→
r ) −

→
BV (

→
r )

In the case of the level II vacuum potentials or fields the corresponding difference or
sum vanishes so that no level I potentials and fields appear, see e.g. Eqs. (146) −
(149).

The presence of two associated but separate level II fields or potentials suggests the
possibility that each of these two fields possesses its own energy density. If this is

true, then the energy density ũE(
→
r ) of the electric field

→
E (

→
r ) =

→
Eφ (

→
r ) −

→
Eg (

→
r ) (425)

is given by the sum of the energy densitiy uφ(
→
r ) of the field

→
Eφ (

→
r ) and the energy

density ug(
→
r ) of the field

→
Eg (

→
r ), i.e.

ũE(
→
r ) = uφ(

→
r ) + ug(

→
r ) 6= uE(

→
r ) (426)

Analogously, if this is true, the energy density ũB(
→
r ) of the magnetic field

→
B (

→
r ) =

→
BA (

→
r ) −

→
BV (

→
r ) (427)

is given by the sum of the energy densitiy uA(
→
r ) of the field

→
BA (

→
r ) and the energy

density uV (
→
r ) of the field

→
BV (

→
r ), i.e.

ũB(
→
r ) = uA(

→
r ) + uV (

→
r ) 6= uB(

→
r ) (428)

If we assume that the energy density of the level II fields depends in the same way on
the fields as the level I fields, see Eqs. (422) and (423), then we obtain from Eqs.
(422), (423) and (425) − (428)

ũE(
→
r ) =

ε0
2

∣∣∣→Eφ (
→
r )
∣∣∣ 2 +

ε0
2

∣∣∣→Eg (
→
r )
∣∣∣ 2 (429)

uE(
→
r ) =

ε0
2

∣∣∣→Eφ (
→
r ) −

→
Eg (

→
r )
∣∣∣ 2

=
ε0
2

∣∣∣→Eφ (
→
r )
∣∣∣ 2 +

ε0
2

∣∣∣→Eg (
→
r )
∣∣∣ 2 − ε0

→
Eφ (

→
r ) ·

→
Eg (

→
r )

(430)

ũE(
→
r ) 6= uE(

→
r ) for

→
Eφ (

→
r ) ·

→
Eg (

→
r ) 6= 0 (431)
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and

ũB(
→
r ) =

1

2µ0

∣∣∣→BA (
→
r )
∣∣∣ 2 +

1

2µ0

∣∣∣→BV (
→
r )
∣∣∣ 2 (432)

uB(
→
r ) =

1

2µ0

∣∣∣→BA (
→
r ) −

→
BV (

→
r )
∣∣∣ 2

=
1

2µ0

∣∣∣→BA (
→
r )
∣∣∣ 2 +

1

2µ0

∣∣∣→BV (
→
r )
∣∣∣ 2 − 1

µ0

→
BA (

→
r ) ·

→
BV (

→
r )

(433)

ũB(
→
r ) 6= uB(

→
r ) for

→
BA (

→
r ) ·

→
BV (

→
r ) 6= 0 (434)

By inserting Eqs. (95) and (96) into Eqs. (429) and (430) and Eqs. (109) and (110)
into Eqs. (432) and (433) we obtain the energy densities in terms of the potentials

φ(
→
r ) and

→
A(

→
r ), namely

ũE(
→
r ) =

ε0
2

∣∣∣ →∇φ ∣∣∣ 2 +
ε0
2

∣∣∣ →∇g ∣∣∣ 2 (435)

uE(
→
r ) =

ε0
2

∣∣∣ →∇ (φ− g)
∣∣∣ 2

=
ε0
2

∣∣∣ →∇φ ∣∣∣ 2 +
ε0
2

∣∣∣ →∇g ∣∣∣ 2 − ε0

(→
∇φ
)
·
(→
∇g
) (436)

ũE(
→
r ) 6= uE(

→
r ) for

(→
∇φ
)
·
(→
∇g
)
6= 0 (437)

and

ũB(
→
r ) =

1

2µ0

∣∣∣ →∇ × →
A
∣∣∣ 2 +

1

2µ0

∣∣∣ →∇ × →
V
∣∣∣ 2 (438)

uB(
→
r ) =

1

2µ0

∣∣∣ →∇ ×(→A − →
V
)∣∣∣ 2

=
1

2µ0

∣∣∣ →∇ × →
A
∣∣∣ 2 +

1

2µ0

∣∣∣ →∇ × →
V
∣∣∣ 2

− 1

µ0

(→
∇ ×

→
A
)
·
(→
∇ ×

→
V
)

(439)

ũB(
→
r ) 6= uB(

→
r ) for

(→
∇ ×

→
A
)
·
(→
∇ ×

→
V
)
6= 0 (440)
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We note that the absence of a level I electric field, i.e.

→
E (

→
r ) =

→
Eφ (

→
r ) −

→
Eg (

→
r ) = −

→
∇(φ− g) = 0 , (441)

implies

→
Eφ (

→
r ) =

→
Eg (

→
r ) (442)

→
∇φ =

→
∇g (443)

uE(
→
r ) = 0 (444)

ũE(
→
r ) = ε0

∣∣∣→Eφ (
→
r )
∣∣∣ 2 = ε0

∣∣∣ →∇φ ∣∣∣ 2 6= 0 (445)

Analogously, the absence of a level I magnetic field, i.e.

→
B (

→
r ) =

→
BA (

→
r ) −

→
BV (

→
r ) =

→
∇ ×

(→
A −

→
V
)

= 0 , (446)

implies

→
BA (

→
r ) =

→
BV (

→
r ) (447)

→
∇ ×

→
A =

→
∇ ×

→
V (448)

uB(
→
r ) = 0 (449)

ũB(
→
r ) =

1

µ0

∣∣∣ →BA (
→
r )
∣∣∣ 2 =

1

µ0

∣∣∣ →∇ × →
A
∣∣∣ 2 6= 0 (450)

Does ũ(
→
r ) or u(

→
r ) represent the appropriate energy density ? It appears reasonable

to assume that ũ(
→
r ) is the appropriate energy density. If this is true, then Eqs. (445)

and (450) represent the energy density of level II vacuum potentials in the absence of
level I fields.
We suggest to study in a separate theoretical work the question if ũ(

→
r ) or u(

→
r ) is the

appropriate energy density. Concerning this issue let’s consider the following
gedanken experiment. Let’s imagine a bifilar wire which consists, for example, of a
cylindrical hollow conductor and a cylindrical solid interior conductor. Assuming
that a DC current I1 flows through one conductor and another DC current I2 flows
in an opposite direction through the other conductor. The current I1 creates an

external magnetic field
→
B1 , the current I2 an external magnetic field

→
B2 , and the

total external magnetic field
→
B is given by

→
B (I1 , I2 ,

→
r ) =

→
B1 (I1 ,

→
r ) +

→
B2 (I2 ,

→
r ) (451)
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This raises the question if the energy density is given by the total magnetic field
→
B ,

i.e.

uB(I1 , I2 ,
→
r ) =

1

2µ0

∣∣∣→B (I1 , I2 ,
→
r )
∣∣∣ 2

=
1

2µ0

∣∣∣→B1 (I1 ,
→
r ) +

→
B2 (I2 ,

→
r )
∣∣∣ 2

=
1

2µ0

∣∣∣→B1 (I1 ,
→
r )
∣∣∣ 2 +

1

2µ0

∣∣∣→B2 (I2 ,
→
r )
∣∣∣ 2

+
1

µ0

→
B1 (I1 ,

→
r ) ·

→
B2 (I2 ,

→
r )

(452)

or by the sum of the energy densities of the separate fields
→
B1 and

→
B2 , i.e.

u12 (I1 , I2 ,
→
r ) = u1

(→
B1 (I1 ,

→
r )
)

+ u2

(→
B2 (I2 ,

→
r )
)

=
1

2µ0

∣∣∣→B1 (I1 ,
→
r )
∣∣∣ 2 +

1

2µ0

∣∣∣→B2 (I2 ,
→
r )
∣∣∣ 2 (453)

and thus

uB(I1 , I2 ,
→
r ) 6= u12 (I1 , I2 ,

→
r ) for

→
B1 (I1 ,

→
r ) ·

→
B2 (I2 ,

→
r ) 6= 0 (454)

The question if uB(I1 , I2 ,
→
r ) or u12 (I1 , I2 ,

→
r ) represents the appropriate energy

density remains open for further discussions and studies. This question is especially

interesting for
→
B = 0 which implies uB = 0 and u12 6= 0 . A vanishing total field,

i.e.
→
B = 0, can be achieved for special values of the opposite flowing currents I1 and

I2 , at least for certain spatial positions.

We note that uB = u12 if
→
B1 ·

→
B2 = 0 , i.e. if

→
B1 is perpendicular to

→
B2 . This,

however, is not the case in our gedanken experiment because the considered bifilar

wire with opposite flowing currents implies that the external fields
→
B1 (I1 ,

→
r ) and

→
B2 (I2 ,

→
r ) are antiparallel to each other.

5 A brief consideration of the electrodynamic

ECE equations

Even if this paper is dedicated to the electro- and magnetostatic ECE equations we
also present here the time-dependent equations of ECE electrodynamics, especially
because we raise the question if the electrodynamic ECE equations can be
transformed and studied in a similar way like the electro- and magnetostatic ECE
equations.
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The latest set of equations of ECE electrodynamics in vector notation, see e.g. Ref.
[6], is given by 37

37 Eqs. (455) − (464) refer to the assumption that the so-called polarization index can be omitted,
i.e. one polarization only, see e.g. Ref. [6].
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Antisymmetry constraints:

→
∇φ − φ

→
ω − ω0

→
A −

∂

∂ t

→
A = 0 (455)

∂A3

∂ y
+
∂A2

∂ z
+ ω2A3 + ω3A2 = 0 (456)

∂A3

∂ x
+
∂A1

∂ z
+ ω1A3 + ω3A1 = 0 (457)

∂A2

∂ x
+
∂A1

∂ y
+ ω1A2 + ω2A1 = 0 (458)

whereby
→
A =

 A1

A2

A3

 and
→
ω =

 ω1

ω2

ω3


Field equations in terms of potentials:

Gauss law:

→
∇ ·
(→
ω ×

→
A
)

= 0 (459)

Faraday induction law:

→
∇ ×

(
φ

→
ω − ω0

→
A
)
− ∂

∂ t

(→
ω ×

→
A
)

= 0 (460)

Coulomb law:

∆φ −
→
∇ ·
(
φ

→
ω − ω0

→
A
)

+
→
∇ ·
(
∂

∂ t

→
A

)
= − ρ

ε0
(461)

Ampere-Maxwell law:

→
∇ ×

(→
∇ ×

→
A −

→
ω ×

→
A
)

+
1

c 2

[
∂ 2

∂ t 2
→
A +

→
∇
∂ φ

∂ t
− ∂

∂ t

(
φ

→
ω − ω0

→
A
)]

= µ0

→
J

(462)

Field-potential relations:

→
B =

→
∇ ×

→
A −

→
ω ×

→
A (463)

→
E = −

→
∇φ + φ

→
ω − ω0

→
A −

∂

∂ t

→
A (464)

The electric field
→
E can also be represented in another way. By solving Eq. (455) for
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→
∇φ and inserting it into Eq. (464) we get

→
E = − 2

(
ω0

→
A −

∂

∂ t

→
A

)
(465)

Another expression for the electric field
→
E can be obtained by solving Eq. (455) for

∂

∂ t

→
A and inserting it into Eq. (464). This leads to

→
E = −2

(→
∇φ − φ

→
ω
)

(466)

According to Ref. [13] the electrodynamic ECE equations (455) − (464) merge into
the Maxwell or Maxwell-Heaviside equations of textbook electrodynamics if 38

φ
→
ω = ω0

→
A (467)

which implies
→
ω ×

→
A = 0 because in this case

→
ω and

→
A are (anti)parallel to each

other. As shown in Ref. [14] there are special types of scalar potentials φ which are
in accordance with Eq. (467), namely 39

φ(
→
r , t) = φt(t)φr(

→
r ) ⇒ φ(

→
r , t) = β(

→
r , t) (468)

whereby β(
→
r , t) is the scalar potential of textbook electrodynamics. Thus, if the

scalar potential φ(
→
r , t) is given by a product of a time-dependent function φt(t) and

a position-dependent function φr(
→
r ), then the electrodynamic ECE equations (455)

− (464) merge into the Maxwell or Maxwell-Heaviside equations of textbook
electrodynamics [14]. This means that novel effects, i.e. such which are beyond

textbook electrodynamics, can only be expected if the potential φ(
→
r , t) cannot be

represented by a product of a time-dependent and a position-dependent function.

This statement is based on the assumption that φ(
→
r , t) represents the physically

relevant potential which results in observable effects. However, the considerations of
the electro- and magnetostatic ECE equations lead to the question if the electro- and

magnetostatic level II potentials φ(
→
r ) and

→
A(

→
r ) are the physically relevant

potentials which result in observable effects. Therefore we raise the same question for

the electrodynamic case: Are the time-dependent potentials φ(
→
r , t) and

→
A(

→
r , t) the

relevant potentials which result in observable effects ? We suggest to study in a
separate work the question if the electrodynamic ECE equations can be transformed
and considered in a similar way like the electro- and magnetostatic ECE equations.
A hypothetical scenario, suggested by the results of the studies of the static case,
could be the following:

38 For
→
ω = 0 and ω0 = 0, and by omitting the antisymmetry constraints (455) − (458), the

electrodynamic ECE equations (455) − (464) merge likewise into the Maxwell or Maxwell-Heaviside
equations of textbook electrodynamics.

39 If the scalar potential φ(
→
r , t) is of the type Eq. (468), then also the vector potential

→
A (

→
r , t) is

constitued by a product of a time-dependent and a position-dependent function [14].
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Possibly there is a transformation of the electrodynamic ECE equations which

reveals the existence of potentials β̃(
→
r , t) and

→̃
Λ(

→
r , t) that emerge from a difference

of two potentials which depend both on time and spatial location, i.e.

β̃(
→
r , t) = φ(

→
r , t)− g(

→
r , t) (469)

→̃
Λ(

→
r , t) =

→
A(

→
r , t) −

→
V (

→
r , t) (470)

If this turns out to be true, then possibly β̃(
→
r , t) and

→̃
Λ(

→
r , t) are the physically

relevant potentials and novel effects, i.e. such which are beyond textbook
electrodynamics, appear under special conditions which imply

β̃(
→
r , t) 6= β(

→
r , t) (471)

→̃
Λ(

→
r , t) 6=

→
Λ(

→
r , t) (472)

→
E (

→
r , t) 6=

→
E T (

→
r , t) (473)

→
B (

→
r , t) 6=

→
B T (

→
r , t) (474)

whereby β(
→
r , t) and

→
Λ(

→
r , t) are the potentials and

→
E T (

→
r , t) and

→
B T (

→
r , t) the

fields of textbook electrodynamics. However, as already mentioned, further studies
are necessary to clarify if this is really true or not.

Concerning the vector potential and magnetic field it is readily obvious that a
relation of the type of Eq. (470) exists. Analogous to the electro- and magnetostatic

equations, see sections 2.2 and 3.2, we infer from Eq. (459) that
→
ω ×

→
A can be

written as

→
ω ×

→
A =

→
∇ ×

→
V (475)

whereby
→
V =

→
V (

→
r , t) is another vector potential which depends in some way on the

vector potential
→
A =

→
A(

→
r , t). Thus from Eqs. (475) and (463) we obtain

→
B =

→
∇ ×

→
A −

→
∇ ×

→
V =

→
∇ ×

(→
A −

→
V
)

=
→
∇ ×

→̃
Λ (476)

whereby

→̃
Λ(

→
r , t) =

→
A(

→
r , t) −

→
V (

→
r , t) (477)
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