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Abstract--This paper introduces asymmetrical regauging 

theory as the origin of the increase in the coefficient of 
performance of a specially designed electric motor.  The 
coefficient of performance terminology, a review of gauge 
theory, and an examination of discarding the Lorentz condition 
to achieve asymmetrical regauging are presented. Finally, 
building a “Wankel” motor to verify this theory is proposed. 

I. INTRODUCTION 

European theoretical electrodynamicists have, in the last 
few years, published voluminous papers[1-3]in the field of 
electromagnetics. In particular [1], offers one possible  
explanation to an electromagnetic process referred to in one 
recent permanent magnet (PM) motor patent [4] as 
“asymmetrical regauging” (ASR). Using this process, these 
specially designed patented PM motors claim to capture and 
use environmental energy as an additional energy source.   

This paper simplifies and explains these theories and 
introduces a simple machine that may be built to investigate 
the above claims1

II. COEFFICIENT OF PERFORMANCE 

. First, the term coefficient of performance 
(COP) is introduced to adequately describe the energy 
transfer of these new motors. The physics behind the ASR 
process will then be examined by reviewing gauge theory and 
the Lorentz gauge, and introducing the asymmetrical 
regauging terminology.   Finally, this paper will consider the 
proposed design of a “Wankel” motor.  

The energy transfer of electrical machinery is generally 
described using the term “efficiency”.  Efficiency is defined 
as the output power divided by the total input power from all 
sources.  The underlying assumption when defining the 
energy of any system is that all the energy input is from an 
identifiable and measurable energy source(s).  In an ideal 
system, with no losses, the upper limit for efficiency would 
reach one. The equation for efficiency  is normally stated [5] 
as 

 

                                                           
This work was supported in part by the ERC Program of the National 

Science Foundation under Award Number EEC-9731677. 

In

Out

P
P

=η .                                                                           (1) 

 Coefficient of performance is a broader energy transfer 
term that defines the measure of output power divided by the 
operator’s input power.  COP is used to describe any 
machinery that has additional energy input from the 
environment.  For example, COP is commonly used to 
describe the energy exchange of heat pumps[6] or solar 
collectors.  Unlike the term “efficiency”, the COP defined in 
(2) can be greater than one.  See Fig. 1 for the energy flow 
diagram. COP is usually greater than efficiency and will be 
equal to the efficiency if the environmental energy input is 
zero.  
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Fig. 1.  Energy flow for machines described by COP. 

III. REVIEW OF  THE LORENTZ GAUGE 

To understand how environmental energy may be utilized 
in a motor, to theoretically gain a COP > η, a review of the 
Lorentz gauge is first presented.  The equations used in 
standard practice to design motors are derived from 
Maxwell’s equations.  It has been accepted practice, to apply 
the Lorentz gauge to these equations to make them simpler.  
In abbreviated steps, we start with Maxwell’s equations [7]: 
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 All the information in Maxwell’s four equations can be 

reduced to the following two equations [7]:          
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The Lorentz gauge is then applied to reduce the complexity 
of these two equations. Mathematically, applying any gauge, 
is represented by (9,10) where gamma is an arbitrary, 
differentiable scalar function called the gauge function [8] . 
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To specifically apply the Lorentz gauge, the “Lorentz 
Condition” is imposed by choosing a set of potentials (A, V) 
such that                              
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Using the Lorentz gauge, (7) can be reduced to (11,12) [8]. 

Equations (11,12) are the ones on which all the equations for 
motor design are currently based [9]. Since the magnetic 
vector field and the voltage scalar field are both changed at 
the same time, this is an example of what can be referred to 
as symmetrical gauging. 
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Notice that (13) is (8) with the middle term, (14), 
eliminated. 
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IV. ASYMMETRICAL REGAUGING 

Invoking the Lorentz condition in classical 
electromagnetics discards the vacuum polarization 
component that has been shown phenomenologically, by 
Lehnert and Roy [10], to exist.  Equation (15) states this 
mathematically. 
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The current density ( Aj


) comes from the vacuum in a way 
that is analogous to Maxwell’s displacement current. 
Asymmetrical regauging is the equivalent of discarding the 
Lorentz condition so that the effects of the vacuum current 
density may be included.  Furthermore, ASR is defined as 
any process that changes the potential energy of a system and 
also produces a net force in the process [1].   

Understanding the vacuum and its polarization are 
essential steps to utilizing energy from the environment. 
According to Noble Laureate T.D. Lee, quantum physicists 
define the vacuum state as the lowest energy state of the 
system [11].  Hence, the vacuum is considered to be the worst 
case model of the environment.  Maxwell’s equations must be 
modified, in the vacuum, since ρ  and J


 vanish. For the 

vacuum, the classical equations for Gauss’s law and the 
Ampere-Maxwell law are the two equations that must be 
revised.  Refer to equations (3-6). 
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In [1, 10],   the  authors show that if the vacuum current 
density factor is included, the Ampere-Maxwell law equation 
changes to 

t
DjH A ∂
∂

+=×∇


                                                              (19) 

where APED


+= 0ε  and MBH


−=
0

1
µ

.                        (20) 

This leads to the result that 
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Hence, discarding the Lorentz condition in classical 
electrodynamics leads to new equations that include the effect 
of the vacuum polarization.  This is a first step to showing 
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physically how it may be possible to use the vacuum as an 
energy source. 

It has already been shown in quantum electrodynamics 
(QED) that the vacuum behaves like a dielectric [12].      The 
vacuum sprouts positron-electron pairs as shown in the 
Feynman diagram in Fig. 2.  Except that it has a positive 
charge equal to the electron’s negative charge, a positron is 
an elementary particle that has the same mass and 
characteristics as an electron [13].  In the Feynman diagram, 
only the particles that enter or leave the diagram are “real” or 
observable. Without changing the process, the internal 
particles cannot be observed. Hence, they are deemed 
“virtual” particles.  The internal particles represent the 
physical “mechanism” involved [12]. 

Fig. 2. Feynman diagram of vacuum polarization [9]. 
 

V. FUTURE  WORK 
It has been shown that by discarding the Lorentz gauge, the 

Ampere-Maxwell law equation evolves to include the current 
density of the vacuum. The task remains to delve deeper into 
this theory and to verify it by applying it to a magnetic motor. 

 The predecessor to this patented motor[4]  appears to be a 
motor previously called the “Wankel motor” [14]. Future 
work is planned to study the Wankel motor to ascertain the 
exact mechanism involved that allows this motor to exchange 
energy with the vacuum. First, this work will be to simulate 
the electromagnetic fields using Magsoft’s Flux 2-D. Using 
the theory introduced, then the work will be to design, build 
and test a brushless DC motor and drive. Whether the 
asymmetrical regauging effect can be observed, is to be 
determined.   

The model proposed will be a prototype based on the 
“Wankel Motor”.  Developed by the Japanese, the Wankel 
Motor is named after its similarity to the Mazda rotary engine 
developed by Fritz Wankel. The first known reference to this 
motor was by [14].  See Fig. 3 for the conceptual diagram of 
the Wankel motor. 

 
Fig. 3.  Conceptual diagram of the Wankel Motor [14]. 

The stator portion consists of permanent magnets wrapped 
into a partial spiral configuration while the circular rotor 
consists of a singular circular magnet and a counter weight 
(not shown).  The rotor and stator magnets are positioned so 
that their polarities give rise to a repulsive force.  For 
instance, the stator magnetic north pole faces the rotor 
magnetic north pole, thus, the north pole of the rotor is in a 
nonlinear magnetic field and experiences a clockwise force 
and acceleration from the point of the smallest air gap to the 
point of the largest air gap (Gaps of .1 mm and .5 mm are 
given for reference) [15]. 

 The purpose for this spiral arrangement is to confine the 
back EMF to a single portion of the motor. As the rotor enters 
the spiral gap, it must be suddenly gauged asymmetrically to 
a magnetostatic scalar potential equal to or greater than the 
potential at the other end of the spiral gap where the magnetic 
gap is smallest [15]. 

This sudden increase in the magnetostatic potential is 
accomplished in the following manner.  During the time the 
stator is rotating, a trickle current is maintained, at a small 
voltage, through the coil of the electromagnet.  Just as the 
rotor enters the spiral gap, a sensor indicates its position and 
causes the circuit to abruptly open.  This creates a high dv/dt 
in the coil of the electromagnet. Due to the Lenz law effect, a 
sharp di/dt is created, in the coil, which produces a sharp and 
sudden increase in the magnetostatic potential called the 
multi-valued potential. 

The second law of thermodynamics has known and 
accepted violations where negative entropy is produced 
temporarily, including the statistical fluctuations of an 
equilibrium many-particle system [16-18]. A major but still 
little-understood violation can also be provided by a sharp 
gradient [19].  This accomplishes the previously discussed 
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ASR process that changes the potential energy of the system 
and produces a net force that kicks the stator magnet across 
the gap.   

VI. CONCLUSION 

It has been shown that by discarding the Lorentz gauge, the 
Ampere-Maxwell law equation evolves to include the current 
density of the vacuum. The physics behind one possible 
explanation for this phenomenon is presented.   

The physics is explained by first considering how the 
Lorentz gauge is used to give us the design equations used 
today.  The Lorentz gauge is then discarded to show how the 
current density of the vacuum may be included in the 
Maxwell-Ampere equation.  The term asymmetrical 
regauging is defined for this procedure and the particle 
physics explaining the vacuum polarity is mentioned.  

The Wankel motor has been introduced as a possible 
mechanism to demonstrate this ASR process. A preliminary 
explanation of the physics behind the motor design has been 
given.  
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NOMENCLATURE 
×  Cross Product 
•  Dot Product 
∇  Vector operator “del”=

t
x
∂
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∂
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t
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∂
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A


 Magnetic vector potential 
B


 Magnetic field 
        Electron           

0ε  Permittivity of free space 

E


 Electric field strength 
       Photon                 
J


 Electric current density (volume) 

Aj


 Vacuum current density 

M


 Magnetization 
0µ  Permeability of free space 
η  Efficiency 
        Positron 

AP


               Classical vacuum polarization 
 (Dipole moment per unit volume) 

InP  Electrical Power Input 

OutP  Mechanical Power Output 

ρ  Charge density 
σ  Vacuum conductivity 
V  Electric potential 
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